Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình hộp ABCD A′B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuôn[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hình hộp ABCD.A′
B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuông góc của A′ lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết SABCD = 60a2, AB = 10a, góc giữa mặt bên (ABB′
A′) và mặt đáy bằng 450 Tính thể tích khối tứ diện ACB′
D′theo a
Câu 2 Giá trị nhỏ nhất của hàm số y= x
x2+ 1 trên tập xác định của nó là
A min
R
R
R
y= 1
y= −1
2.
Câu 3 Đồ thị hàm số y= (√3 − 1)x có dạng nào trong các hình H1, H2, H3, H4 sau đây?
Câu 4 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?
A log x > log y B ln x > ln y C logax> logay D log 1
a
x> log1
a y
Câu 5 Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?
Câu 6 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?
A. √5
a< √5
√
2 > b√2 C ea > eb D a−
√
3 < b−√3
Câu 7 Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M′đối xứng với M qua mặt phẳng Oxz?
A M′
(−2; −3; −1)
Câu 8 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây là đúng?
A |→−u | = √3 B |→−u |= 1 C |→−u |= 3
D |→−u |= 9
Câu 9 Trên tập số phức, cho phương trình z2+ 2(m − 1)z + m2+ 2m = 0 Có bao nhiêu tham số m để phương trình đã cho có hai nghiệm phân biệt z1; z2thõa mãn
z1
2 +
z2
2
= 5
Câu 10 Cho khối lăng trụ đứng ABC.A′B′C′ có đáy ABC là tam giác vuông cân tại A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′
BC) bằng
√ 3
3 a Tính thể tích của khối lăng trụ ABC.A
′
B′C′
A. a
3
a3
a3
√ 2
a3
√ 2
Câu 11 Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng
Câu 12 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn log4(9x2 + 16y2 + 112y) + log3(9x2 + 16y2) < log4y+ log3(684x2+ 1216y2+ 720y)?
Câu 13 Bất phương trình log2021(x − 1) ≤ 0 có bao nhiêu nghiệm nguyên?
Trang 2Câu 14 Cho hai số phức u, v thỏa mãn
u =
v = 10 và
3u − 4v
= 50 Tìm giá trị lớn nhất của biểu thức
4u+ 3v − 8 + 6i
Câu 15 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
2F(0) − G(0)= 1, F(2) − 2G(2) = 4 và F(1) − G(1) = −1 Tính e
2
R
1
f(ln x)
Câu 16 Đạo hàm của hàm số y= (2x + 1)−
1
3 trên tập xác định là
A −2
3(2x+ 1)−
4
1
3 ln(2x+ 1)
C (2x+ 1)−
1
3(2x+ 1)−
4
3
Câu 17 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là
A m ≥ 0 hoặc m ≤ −1 B 0 ≤ m ≤ 1 C m ≥ 1 hoặc m ≤ 0 D −1 ≤ m ≤ 0.
Câu 18 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là
Câu 19 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A |z2|= |z|2 B z − z = 2a C z+ z = 2bi D z · z= a2− b2
Câu 20 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)
1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là
Câu 21 Cho z là một số phức Xét các mệnh đề sau :
I Nếu z= z thì z là số thực
II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z
Câu 22 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗
Hỏi đâu là phương án đúng?
Câu 23 Cho số phức z thỏa mãn z = (1+ i)(2 + i)
1 − i + (1 − i)(2 − i)
1+ i Trong tất cả các kết luận sau, kết luận nào đúng?
A z= z B z là số thuần ảo C z= 1
Câu 24 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 25 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là
Câu 26 Tính tích phân I = R2
1 xexdx
Câu 27 Tích phânR1
0 e−x dx bằng
A. e −1
1
1
e − 1.
Câu 28 Giá trị củaR−10 ex +1dxbằng
Trang 3Câu 29 Cho 01 f(x)= 2Rv `a 1
0 g(x)= 5 R1
0 [ f (x) − 2g(x)] bằng
Câu 30 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − 1= 0 Điểm nào dưới đây không thuộc mặt phẳng (α)
A M(−2; 1; −8) B P(3; 1; 3) C N(4; 2; 1) D Q(1; 2; −5).
Câu 31 Tìm nguyên hàm của hàm số f (x)= √ 1
2x+ 1.
C.R f(x)dx= √ 1
R
f(x)dx= 1
2
√ 2x+ 1 + C
Câu 32 Cho hàm số f (x) có đạo hàm với mọi x ∈ R và f′(x)= 2x + 1 Giá trị f (2) − f (1) bằng
Câu 33 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ
là
A (3; −1; −4) B (−3; −1; −4) C (3; 1; 4) D (−3; −1; 4).
Câu 34 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2
√ 2
3 . B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8
3. D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2
Câu 35 Cho số phức z thỏa mãn1 − √5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A 3 < |z| < 5 B. 3
2 < |z| < 3 C. 1
2 < |z| < 2 D. 5
2 < |z| < 4
Câu 36 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 37 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
Câu 38 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức
S = a + 2b
Câu 39 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 40 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 1
2;
9
4
!
4;
5 4
!
4;+∞
!
4
!
Câu 41 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|
Trang 4Câu 42 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
A z là số thuần ảo B z là một số thực không dương.
C Phần thực của z là số âm D |z|= 1
Câu 43 Chọn mệnh đề đúng trong các mệnh đề sau:
A.
3
R
1
|x2− 2x|dx =R2
1
|x2− 2x|dx −
3 R
2
|x2− 2x|dx
B.
3
R
1
|x2− 2x|dx = −R2
1
(x2− 2x)dx+R3
2 (x2− 2x)dx
C.
3
R
1
|x2− 2x|dx =R2
1
(x2− 2x)dx+R3
2 (x2− 2x)dx
D.
3
R
1
|x2− 2x|dx =R2
1 (x2− 2x)dx −
3 R
2 (x2− 2x)dx
Câu 44 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600
Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)
Câu 45 Tìm tập xác định D của hàm số y=
r log23x+ 1
x −1
Câu 46 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox
A. 31π
32π
33π
5 .
Câu 47 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt
phẳng (ABCD), S A= 2a Tính thể tích khối chóp S.ABCD
Câu 48 Biết
π 2 R
0 sin 2xdx= ea Khi đó giá trị a là:
Câu 49 Hàm số y= x4− 4x2+ 1 đồng biến trên khoảng nào trong các khoảng sau đây
Câu 50 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a < 1 thì ax > ay
⇔ x< y B Nếu a > 0 thì ax = ay
⇔ x= y
C Nếu a > 0 thì ax > ay ⇔ x< y D Nếu a > 1 thì ax > ay ⇔ x> y
Trang 5HẾT