1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (621)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 126,32 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính I = 1∫ 0 3√7x + 1dx A I = 21 8 B I = 20 7 C I = 45 28 D I = 60 28 C[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001

Câu 1 Tính I =R1

0

3

√ 7x+ 1dx

A I = 21

28.

Câu 2 Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?

Câu 3 Tính diện tích S của hình phẳng được giới hạn bởi các đường y= x2, y = −x

A S = 1

6.

Câu 4 Biết F(x) là một nguyên hàm của hàm số f (x)= x

cos2x và F(

π

3)= √π

3 Tìm F(

π

4)

A F(π

4)= π

3 + ln 2

2 . B F(

π

4)= π

3 −

ln 2

2 . C F(

π

4)= π

4 −

ln 2

2 . D F(

π

4)= π

4 + ln 2

2 .

Câu 5 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc

trục tung sao cho tam giác MNEcân tại E

A (0; 2; 0) B (−2; 0; 0) C (0; −2; 0) D (0; 6; 0).

Câu 6 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5 = 0 Bán kính R của (S) bằng bao nhiêu?

Câu 7 Cho hình hộp ABCD.A

B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuông góc của A′

lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết SABCD = 60a2, AB = 10a, góc giữa mặt bên (ABB′A′) và mặt đáy bằng 450 Tính thể tích khối tứ diện ACB′D′theo a

Câu 8 Cho hình lập phương ABCD.A

B′C′D′ Tính góc giữa hai đường thẳng AC và BC′

Câu 9 Tổng tất cả các nghiệm của phương trình log2(6 − 2x)= 1 − x bằng

Câu 10 Cho số phức zthỏa mãn

z

i+ 2

= 1 Biết rằng tập hợp các điểm biểu diễn số phức zlà một đường tròn (C) Tính bán kính rcủa đường tròn (C)

Câu 11 Tính đạo hàm của hàm số y= 5x

′ = 5xln 5

Câu 12 BiếtR f(x)dx= sin 3x + C Mệnh đề nào sau đây là mệnh đề đúng?

A f (x)= 3 cos 3x B f (x)= −3 cos 3x C f (x)= cos 3x

3 . D f (x)= −cos 3x

Câu 13 Đường thẳng y= 2 là tiệm cận ngang của đồ thị nào dưới đây?

A y= −2x+ 3

2x − 2

1+ x

1 − 2x.

Trang 2

Câu 14 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực đại của đồ thị hàm số đã cho có tọa độ là

Câu 15 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn log4(9x2 + 16y2 + 112y) + log3(9x2 + 16y2) < log4y+ log3(684x2+ 1216y2+ 720y)?

Câu 16 Thiết diện qua trục của một hình nón là một tam giác đều cạnh có độ dài bằng a Tính diện tích

toàn phần St p của hình nón đó

A St p = 1

4πa2

Câu 17 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?

Câu 18 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức

z1+ z2

z1

Câu 19 Cho các mệnh đề sau:

I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y

II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)

III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy

IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y

Câu 20 Cho số phức z thỏa mãn z= 4(−3+ i)

1 − 2i + (3 − i)2

−i Mô-đun của số phức w= z − iz + 1 là

A |w|= 6√3 B |w|= 4√5 C |w|= √85 D |w|= √48

Câu 21 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là

A −1 ≤ m ≤ 0 B m ≥ 1 hoặc m ≤ 0 C m ≥ 0 hoặc m ≤ −1 D 0 ≤ m ≤ 1.

Câu 22 Cho số phức z= 2 + 5i Tìm số phức w = iz + z

Câu 23 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?

Câu 24 Cho số phức z thỏa mãn z = (1+ i)(2 + i)

1 − i + (1 − i)(2 − i)

1+ i Trong tất cả các kết luận sau, kết luận nào đúng?

z.

Câu 25 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là

Câu 26 Mệnh đề nào sau đây sai?

A.R( f (x) − g(x))= R f (x) − R g(x), với mọi hàm số f (x); g(x) liên tục trên R

B. R f′(x)= f (x) + C với mọi hàm số f (x) có đạo hàm liên tục trên R

C.R( f (x)+ g(x)) = R f (x) + R g(x), với mọi hàm số f (x); g(x) liên tục trên R

D.R k f(x)= k R f (x) với mọi hằng số k và với mọi hàm số f (x) liên tục trên R

Câu 27 Giá trị củaR−10 ex +1dxbằng

Câu 28 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng đi qua trọng

tâm G của tam giác ABC và vuông góc với đường thẳng AC có phương trình là

A 3x − 2y+ z − 4 = 0 B 3x+ 2y + z − 4 = 0

C 3x − 2y+ z − 12 = 0 D 3x − 2y+ z + 4 = 0

Trang 3

Câu 29 Hàm số y= F(x) là một nguyên hàm của hàm số y = f (x) Hãy chọn khẳng định đúng.

A F

(x)+ C = f (x) D F(x)= f′

(x)+ C

Câu 30 Hàm số f (x) thoả mãn f′(x)= xxlà:

A x2 x+ C B (x − 1)x+ C C (x+ 1)x+ C D x2+ x+1

x+ 1 + C.

Câu 31 Cho f (x) là hàm số liên tục trên [a; b] (với a < b ) và F(x) là một nguyên hàm của f (x) trên

[a; b] Mệnh đề nào dưới đây đúng?

A.Rabk · f(x)= k[F(b) − F(a)]

B Diện tích S của hình phẳng giới hạn bởi hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) và trục hoành được tính theo công thức S = F(b) − F(a)

C.Rb

a f(2x+ 3) = F(2x + 3)

b

a

D.Ra

b f(x)= F(b) − F(a)

Câu 32 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) và đi qua điểm M(1; 2; −2) có phương trình là

A (x+ 2)2+ y2+ z2 = 3 B (x − 2)2+ y2+ z2 = 3

C (x+ 2)2+ y2+ z2 = 9 D (x − 2)2+ y2+ z2 = 9

Câu 33 Tìm nguyên hàm của hàm số f (x)= √ 1

2x+ 1.

A.R f(x)dx= 1

2

C.R f(x)dx= √ 1

R

f(x)= √2x+ 1 + C

Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P=

|z|2− 42 B P=

|z|2− 22 C P = (|z| − 4)2 D P = (|z| − 2)2

Câu 35 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Câu 36 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

Câu 37 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min= 1 B |w|min= 2 C |w|min = 3

2. D |w|min = 1

2.

Câu 38 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2

1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?

A. 3

2 < |z| < 2 B. 1

2 < |z| < 3

5

2 < |z| < 7

2. D 2 < |z| <

5

2.

Câu 39 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|

A max T = 2√5 B P= 2016 C P = −2016 D P = 1

Câu 40 Cho số phức z thỏa mãn z không phải là số thực và ω= z

2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là

Trang 4

Câu 41 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?

A Phần thực của z là số âm B z là một số thực không dương.

Câu 42 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

√ 2

1

1

5.

Câu 43 Chọn mệnh đề đúng trong các mệnh đề sau:

A Nếu a > 0 thì ax = ay ⇔ x= y B Nếu a > 1 thì ax > ay ⇔ x> y

C Nếu a > 0 thì ax > ay ⇔ x< y D Nếu a < 1 thì ax > ay ⇔ x< y

Câu 44 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)

có diện tích bằng:

A. 1

1

1

1

3.

Câu 45 Hàm số nào trong các hàm số sau đồng biến trên R.

x+ 2 .

Câu 46 Cho hình lăng trụ đứng ABC.A

B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′B′C′

A 4a3√

3

Câu 47 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M là điểm nằm trên

đoạn AB sao cho MA= 2MB Tìm tọa độ điểm M

A M(2

3;

7

3;

21

7

3;

10

3 ;

31

4

3;

10

3 ;

16

5

3;

11

3 ;

17

3 ).

Câu 48 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh

của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng

A. πa2√

15

πa2√ 17

πa2√ 17

πa2√ 17

Câu 49 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x

sin x+ 2 cos x và F(−

π

2)= π Khi đó giá trị F(0) bằng:

A. 1

4ln 2+ 3π

1

5ln 2+ 6π

5 . C ln 2+ 6π

5 .

Câu 50 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b

2x+ C Khi đó giá trị a + b là:

Trang 5

HẾT

Ngày đăng: 10/04/2023, 08:00

w