Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính I = 1∫ 0 3√7x + 1dx A I = 21 8 B I = 20 7 C I = 45 28 D I = 60 28 C[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001
Câu 1 Tính I =R1
0
3
√ 7x+ 1dx
A I = 21
28.
Câu 2 Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?
Câu 3 Tính diện tích S của hình phẳng được giới hạn bởi các đường y= x2, y = −x
A S = 1
6.
Câu 4 Biết F(x) là một nguyên hàm của hàm số f (x)= x
cos2x và F(
π
3)= √π
3 Tìm F(
π
4)
A F(π
4)= π
3 + ln 2
2 . B F(
π
4)= π
3 −
ln 2
2 . C F(
π
4)= π
4 −
ln 2
2 . D F(
π
4)= π
4 + ln 2
2 .
Câu 5 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E
A (0; 2; 0) B (−2; 0; 0) C (0; −2; 0) D (0; 6; 0).
Câu 6 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5 = 0 Bán kính R của (S) bằng bao nhiêu?
Câu 7 Cho hình hộp ABCD.A′
B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuông góc của A′
lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết SABCD = 60a2, AB = 10a, góc giữa mặt bên (ABB′A′) và mặt đáy bằng 450 Tính thể tích khối tứ diện ACB′D′theo a
Câu 8 Cho hình lập phương ABCD.A′
B′C′D′ Tính góc giữa hai đường thẳng AC và BC′
Câu 9 Tổng tất cả các nghiệm của phương trình log2(6 − 2x)= 1 − x bằng
Câu 10 Cho số phức zthỏa mãn
z
i+ 2
= 1 Biết rằng tập hợp các điểm biểu diễn số phức zlà một đường tròn (C) Tính bán kính rcủa đường tròn (C)
Câu 11 Tính đạo hàm của hàm số y= 5x
′ = 5xln 5
Câu 12 BiếtR f(x)dx= sin 3x + C Mệnh đề nào sau đây là mệnh đề đúng?
A f (x)= 3 cos 3x B f (x)= −3 cos 3x C f (x)= cos 3x
3 . D f (x)= −cos 3x
Câu 13 Đường thẳng y= 2 là tiệm cận ngang của đồ thị nào dưới đây?
A y= −2x+ 3
2x − 2
1+ x
1 − 2x.
Trang 2Câu 14 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực đại của đồ thị hàm số đã cho có tọa độ là
Câu 15 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn log4(9x2 + 16y2 + 112y) + log3(9x2 + 16y2) < log4y+ log3(684x2+ 1216y2+ 720y)?
Câu 16 Thiết diện qua trục của một hình nón là một tam giác đều cạnh có độ dài bằng a Tính diện tích
toàn phần St p của hình nón đó
A St p = 1
4πa2
Câu 17 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?
Câu 18 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức
z1+ z2
z1
là
Câu 19 Cho các mệnh đề sau:
I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y
II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)
III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy
IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y
Câu 20 Cho số phức z thỏa mãn z= 4(−3+ i)
1 − 2i + (3 − i)2
−i Mô-đun của số phức w= z − iz + 1 là
A |w|= 6√3 B |w|= 4√5 C |w|= √85 D |w|= √48
Câu 21 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là
A −1 ≤ m ≤ 0 B m ≥ 1 hoặc m ≤ 0 C m ≥ 0 hoặc m ≤ −1 D 0 ≤ m ≤ 1.
Câu 22 Cho số phức z= 2 + 5i Tìm số phức w = iz + z
Câu 23 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?
Câu 24 Cho số phức z thỏa mãn z = (1+ i)(2 + i)
1 − i + (1 − i)(2 − i)
1+ i Trong tất cả các kết luận sau, kết luận nào đúng?
z.
Câu 25 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là
Câu 26 Mệnh đề nào sau đây sai?
A.R( f (x) − g(x))= R f (x) − R g(x), với mọi hàm số f (x); g(x) liên tục trên R
B. R f′(x)= f (x) + C với mọi hàm số f (x) có đạo hàm liên tục trên R
C.R( f (x)+ g(x)) = R f (x) + R g(x), với mọi hàm số f (x); g(x) liên tục trên R
D.R k f(x)= k R f (x) với mọi hằng số k và với mọi hàm số f (x) liên tục trên R
Câu 27 Giá trị củaR−10 ex +1dxbằng
Câu 28 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng đi qua trọng
tâm G của tam giác ABC và vuông góc với đường thẳng AC có phương trình là
A 3x − 2y+ z − 4 = 0 B 3x+ 2y + z − 4 = 0
C 3x − 2y+ z − 12 = 0 D 3x − 2y+ z + 4 = 0
Trang 3Câu 29 Hàm số y= F(x) là một nguyên hàm của hàm số y = f (x) Hãy chọn khẳng định đúng.
A F′
(x)+ C = f (x) D F(x)= f′
(x)+ C
Câu 30 Hàm số f (x) thoả mãn f′(x)= xxlà:
A x2 x+ C B (x − 1)x+ C C (x+ 1)x+ C D x2+ x+1
x+ 1 + C.
Câu 31 Cho f (x) là hàm số liên tục trên [a; b] (với a < b ) và F(x) là một nguyên hàm của f (x) trên
[a; b] Mệnh đề nào dưới đây đúng?
A.Rabk · f(x)= k[F(b) − F(a)]
B Diện tích S của hình phẳng giới hạn bởi hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) và trục hoành được tính theo công thức S = F(b) − F(a)
C.Rb
a f(2x+ 3) = F(2x + 3)
b
a
D.Ra
b f(x)= F(b) − F(a)
Câu 32 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) và đi qua điểm M(1; 2; −2) có phương trình là
A (x+ 2)2+ y2+ z2 = 3 B (x − 2)2+ y2+ z2 = 3
C (x+ 2)2+ y2+ z2 = 9 D (x − 2)2+ y2+ z2 = 9
Câu 33 Tìm nguyên hàm của hàm số f (x)= √ 1
2x+ 1.
A.R f(x)dx= 1
2
√
C.R f(x)dx= √ 1
R
f(x)= √2x+ 1 + C
Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P=
|z|2− 42 B P=
|z|2− 22 C P = (|z| − 4)2 D P = (|z| − 2)2
Câu 35 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω = 1
z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?
Câu 36 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i
2+ iz Mệnh đề nào sau đây đúng?
Câu 37 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 1 B |w|min= 2 C |w|min = 3
2. D |w|min = 1
2.
Câu 38 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A. 3
2 < |z| < 2 B. 1
2 < |z| < 3
5
2 < |z| < 7
2. D 2 < |z| <
5
2.
Câu 39 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
A max T = 2√5 B P= 2016 C P = −2016 D P = 1
Câu 40 Cho số phức z thỏa mãn z không phải là số thực và ω= z
2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là
Trang 4Câu 41 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
A Phần thực của z là số âm B z là một số thực không dương.
Câu 42 Cho số phức z , 0 sao cho z không phải là số thực và w = z
1+ z2 là số thực Tính giá trị biểu thức |z|
1+ |z|2 bằng?
√ 2
1
1
5.
Câu 43 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a > 0 thì ax = ay ⇔ x= y B Nếu a > 1 thì ax > ay ⇔ x> y
C Nếu a > 0 thì ax > ay ⇔ x< y D Nếu a < 1 thì ax > ay ⇔ x< y
Câu 44 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
A. 1
1
1
1
3.
Câu 45 Hàm số nào trong các hàm số sau đồng biến trên R.
x+ 2 .
Câu 46 Cho hình lăng trụ đứng ABC.A′
B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′B′C′
A 4a3√
3
Câu 47 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M là điểm nằm trên
đoạn AB sao cho MA= 2MB Tìm tọa độ điểm M
A M(2
3;
7
3;
21
7
3;
10
3 ;
31
4
3;
10
3 ;
16
5
3;
11
3 ;
17
3 ).
Câu 48 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh
của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng
A. πa2√
15
πa2√ 17
πa2√ 17
πa2√ 17
Câu 49 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x
sin x+ 2 cos x và F(−
π
2)= π Khi đó giá trị F(0) bằng:
A. 1
4ln 2+ 3π
1
5ln 2+ 6π
5 . C ln 2+ 6π
6π
5 .
Câu 50 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b
2x+ C Khi đó giá trị a + b là:
Trang 5HẾT