1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Đề ôn tập giải tích lớp 12 (77)

14 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập giải tích toán 12
Chuyên ngành Giải tích
Thể loại Đề ôn tập
Định dạng
Số trang 14
Dung lượng 0,91 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

ĐỀ MẪU CÓ ĐÁP ÁN ÔN TẬP GIẢI TÍCH TOÁN 12 Thời gian làm bài 40 phút (Không kể thời gian giao đề) Họ tên thí sinh Số báo danh Mã Đề 077 Câu 1 Tính tích phân A B C D Đáp án đúng C Câu 2 Có bao nhiêu số[.]

Trang 1

ĐỀ MẪU CÓ ĐÁP ÁN ÔN TẬP GIẢI TÍCH

TOÁN 12

Thời gian làm bài: 40 phút (Không kể thời gian giao đề)

-Họ tên thí sinh:

Số báo danh:

Mã Đề: 077.

Câu 1 Tính tích phân:

Đáp án đúng: C

Câu 2 Có bao nhiêu số nguyên của thuộc đoạn để đồ thị hàm số có đúng hai đường tiệm cân?

Đáp án đúng: B

Giải thích chi tiết: Ta có điều kiện xác định là , khi đó đồ thị hàm số sẽ không có tiệm cận ngang

Ta có

Suy ra là hai đường tiệm cận đứng

Vậy để đồ thị hàm số có đúng hai đường tiệm cận thì , theo bài thuộc đoạn Vậy có 200

số nguyên của thỏa mãn đầu bài

Câu 3 Tính mô đun của số phức:

Đáp án đúng: D

Câu 4

Cho hàm số có đồ thị như hình vẽ sau

Trang 2

Gọi là giá trị nhỏ nhất của tham số để đồ thị hàm số có số điểm cực trị ít nhất Tìm mệnh đề đúng trong các mệnh đề sau?

Đáp án đúng: D

Bảng biến thiên:

Trang 3

Từ bảng biến thiên của hàm số suy ra hàm số có số điểm cực trị ít nhất khi và chỉ khi

Câu 5 Một con cá hồi bơi ngược dòng để vượt một khoảng cách là Vận tốc của dòng nước là Nếu vận tốc bơi của cá khi nước đứng yên là thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức Trong đó là một hằng số, được tính bằng jun Tìm vận tốc bơi của cá khi nước đứng yên để năng lượng tiêu hao là ít nhất

Đáp án đúng: A

Giải thích chi tiết: Vận tốc của cá bơi khi ngược dòng là: ( )

Thời gian để cá bơi vượt khoảng cách là

Năng lượng tiêu hao của cá để vượt khoảng cách đó là:

Câu 6 Cho hàm số có đồ thị là Đồ thị tiếp xúc với trục hoành tại điểm có hoành độ?

Đáp án đúng: C

Giải thích chi tiết: Xét hệ phương trình :

Vậy tiếp xúc với tại điểm có hoành độ

Câu 7 Tập xác định của hàm số

Đáp án đúng: B

Giải thích chi tiết: Tập xác định của hàm số

Lời giải

Trang 4

Vậy tập xác định của hàm số là

Câu 8 Trên khoảng thì hàm số

A Có giá trị lớn nhất là B Có giá trị nhỏ nhất là

C Có giá trị lớn nhất là D Có giá trị nhỏ nhất là

Đáp án đúng: D

Câu 9 Cho hàm số Hàm số đã cho đạt cực tiểu tại , đạt cực đại tại đồng thời khi và chỉ khi:

Đáp án đúng: C

Giải thích chi tiết: Cho hàm số Hàm số đã cho đạt cực tiểu tại , đạt cực đại tại đồng thời khi và chỉ khi:

Lời giải

Yêu cầu bài toán tương đương tìm để hàm số đã cho có hai cực trị

Hàmsố đã cho có hai cực trị khi vàchỉ khi phương trình có hai nghiệm phân biệt và , khi đó:

Câu 10 Cho hàm số có đồ thị là Phương trình tiếp tuyến của tại điểm

là:

Đáp án đúng: C

Giải thích chi tiết: Cho hàm số có đồ thị là Phương trình tiếp tuyến của tại điểm

Trang 5

Lời giải

Phương trình tiếp tuyến của tại điểm là:

Câu 11 Cho hàm số với là tham số thực Tìm tất cả các giá trị để hàm số đồng biến trên khoảng

Đáp án đúng: A

Câu 12

Đáp án đúng: C

Câu 13 Họ nguyên hàm của hàm số

Đáp án đúng: B

Giải thích chi tiết: Họ nguyên hàm của hàm số

Lời giải

Câu 14

Trang 6

Biết với thuộc Khẳng định nào sau đây đúng?

Đáp án đúng: B

Câu 15 Tập xác định của hàm số

Đáp án đúng: C

Giải thích chi tiết: Tập xác định của hàm số

Lời giải

Câu 16 Gọi , là hai nghiệm phức của phương trình Khi đó bằng

Đáp án đúng: D

Giải thích chi tiết: Gọi , là hai nghiệm phức của phương trình Khi đó bằng

Lời giải

Câu 17 Đạo hàm của hàm số với là

Đáp án đúng: D

Câu 18 Cho số thực thỏa mãn điều kiện Mệnh đề nào sau đây đúng?

Trang 7

C D

Đáp án đúng: C

Giải thích chi tiết:

Ta thấy

Câu 19

Cho hàm số liên tục trên , có bảng biến thiên như hình sau:

Trong các mệnh đề sau, mệnh đề nào sai?

A Đồ thị hàm số có đúng một đường tiệm cận.

B Hàm số nghịch biến trên mỗi khoảng

C Hàm số có giá trị lớn nhất bằng và giá trị nhỏ nhất bằng

D Hàm số có hai điểm cực trị.

Đáp án đúng: C

Giải thích chi tiết: (Chuyên Lê Thánh Tông 2019) Cho hàm số liên tục trên , có bảng biến thiên như hình sau:

Trong các mệnh đề sau, mệnh đề nào sai?

A Hàm số có hai điểm cực trị.

B Hàm số có giá trị lớn nhất bằng và giá trị nhỏ nhất bằng

C Đồ thị hàm số có đúng một đường tiệm cận.

D Hàm số nghịch biến trên mỗi khoảng

Lời giải

Dựa vào BBT ta thấy hàm số không có GTLN, GTNN

Câu 20 Có bao nhiêu giá trị nguyên của tham số m để đường thẳng cắt đồ thị hàm số tại

Trang 8

Đáp án đúng: D

Giải thích chi tiết: Có bao nhiêu giá trị nguyên của tham số m để đường thẳng cắt đồ thị hàm số

tại hai điểm phân biệt sao cho ?

A B C D

Lời giải

Điều kiện:

Xét phương trình hoành độ giao điểm: (1)

(2)

Mà không là nghiệm của phương trình (2) luôn có 2 nghiệm phân biệt, khác 1

luôn có 2 nghiệm phân biệt đường thẳng và đồ thị đã cho luôn cắt nhau tại hai điểm phân biệt

Ta có

(4)

Vậy có 2 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

Câu 21 Trong mặt phẳng tọa độ , số phức có tập hợp biểu diễn là một đường thẳng Môđun của bằng

Đáp án đúng: B

Giải thích chi tiết:

.

Điều kiện

Ta có

Lấy môđun hai vế ta được

Trang 9

(*).

Câu 22 Biết , trong đó , là các số nguyên dương Giá trị của biểu thức

Đáp án đúng: C

Suy ra:

Câu 23 Tìm tất cả các giá trị của tham số m sao cho đồ thị hàm số có đúng hai đường tiệm cận

Đáp án đúng: D

Trang 10

Giải thích chi tiết: Ta có

Mặt khác

Do đó đồ thị hàm số có hai đường tiệm cận ngang

Để đồ thị hàm số có đứng hai đường tiệm cận thì nó phải không có tiệm cận đứng

trình này vô nghiệm)

Vậy là giá trị cần tìm

Câu 24 Cho biết sự tăng dân số được tính theo công thức trong đó là dân số của năm lấy làm mốc, là dân số sau năm và là tỷ lệ tăng dân số hàng năm Đầu năm , dân số của tỉnh là

người, tính đến đầu năm dân số tỉnh là người Nếu tỉ lệ tăng dân số hàng năm giữ nguyên thì đầu năm dân số tỉnh khoảng bao nhiêu người?

Đáp án đúng: C

Câu 25 Số lượng của loại vi khuẩn A trong một phòng thí nghiệm ước tính theo công thức trong đó

là số lượng vi khuẩn A ban đầu, là số lượng vi khuẩn A có sau phút Biết sau phút thì số lượng vi khuẩn A là nghìn con Hỏi sau bao lâu, kể từ lúc ban đầu, số lượng vi khuẩn A là triệu con?

A phút B phút C phút D phút.

Đáp án đúng: C

Giải thích chi tiết: Vì sau phút thì số lượng vi khuẩn A là nghìn con nên ta có phương trình

con

Câu 26 Cho và , biểu thức có giá trị bằng bao nhiêu?

Đáp án đúng: B

Giải thích chi tiết: + Tự luận : Ta có Ta chọn đáp án A

+Trắc nghiệm : Sử dụng máy tính Casio, Thay , rồi nhập biểu thức vào máy bấm =, được kết quả Ta chọn đáp án B

Trang 11

Câu 27 Một người gửi triệu đồng vào ngân hàng với lãi suất / tháng Biết rằng nếu không rút tiền thì

cứ sau mỗi tháng , số tiền lãi sẽ được cộng dồn vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lãnh được số tiền nhiều hơn triệu đồng bao gồm cả tiền gốc và lãi, nếu trong thời gian này người đó không rút tiền và lãi suất không thay đổi?

Đáp án đúng: C

Giải thích chi tiết: Giả sử sau tháng người đó thu được số tiền hơn triệu đồng.

Vậy sau ít nhất tháng người đó lãnh được số tiền nhiều hơn triệu đồng bao gồm cả tiền gốc và lãi

Câu 28 Anh Bình vay ngân hàng tỷ đồng để xây nhà và trả dần mỗi năm triệu đồng Kỳ trả đầu tiên là sau khi nhận vốn với lãi suất trả chậm một năm Hỏi sau mấy năm anh Bình mới trả hết nợ đã vay?

Đáp án đúng: A

Giải thích chi tiết: Kỳ trả nợ đầu tiên là sau khi nhận vốn nên đây là bài toán vay vốn trả góp đầu kỳ.

Gọi là số tiền vay ngân hàng, là số tiền trả trong mỗi chu kỳ, là lãi suất trả chậm (tức là lãi suất cho số tiền còn nợ ngân hàng) trên một chu kỳ, là số kỳ trả nợ

Số tiền còn nợ ngân hàng (tính cả lãi) trong từng chu kỳ như sau:

+ Đầu kỳ thứ nhất là

……

+ Theo giả thiết quy nạp, đầu kỳ thứ là

Vậy số tiền còn nợ (tính cả lãi) sau chu kỳ là

Trở lại bài toán, để sau năm (chu kỳ ở đây ứng với một năm) anh Bình trả hết nợ thì ta có

Vậy phải sau năm anh Bình mới trả hết nợ đã vay

Câu 29 Phương trình trên tập số phức có các nghiệm là:

Đáp án đúng: B

Giải thích chi tiết: Phương trình trên tập số phức có các nghiệm là:

Hướng dẫn giải:

Trang 12

Ta chọn đáp án A.

Câu 30 Cho hai số thực dương thỏa mãn Khẳng định nào sau đây đúng?

Đáp án đúng: A

Câu 31 Cho , và số thực m, n Hãy chọn câu đúng.

Đáp án đúng: B

Câu 32 Tính diện tích của hình phẳng giới hạn bởi đồ thị các hàm số , và

Đáp án đúng: D

Câu 33 Tìm giá trị nhỏ nhất của hàm số y=x3−3x2−9x+2 trên đoạn [0;4]

A min[0; 4] y=−25 B min[0; 4] y=−34

C min[0 ; 4] y=−18 D min[0; 4] y=2

Đáp án đúng: A

Câu 34 Tìm tập nghiệm S của phương trình

Đáp án đúng: A

Câu 35 Cho Biểu thức được biểu diễn theo là:

Đáp án đúng: D

Câu 36 Cho hàm số y= x+2m

x+1 ( m là tham số thực) thỏa mãn max [0;2] y=4 Mệnh đề nào dưới đây đúng?

A m<0 B 4 ≤ m<6 C m ≥6 D 0≤ m<4

Trang 13

Đáp án đúng: D

Câu 37 Tính tích phân

Đáp án đúng: A

Câu 38 Tính khoảng cách giữa hai điểm cực tiểu của đồ thị hàm số

Đáp án đúng: B

Giải thích chi tiết:

Lời giải

Tọa độ hai điểm cực tiểu là và nên khoảng cách giữa hai điểm cực tiểu là

nghiệm của bất phương trình (*) là

Đáp án đúng: A

Khi đó tập nghiệm của bất phương trình (*) là

Lời giải

Vì là bất đẳng thức đúng nên

Vì thế (*)

Trang 14

Vậy tập nghiệm của bất phương trình (*) là

Đáp án đúng: C

Ngày đăng: 06/04/2023, 17:43

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w