Cho hàm số có bảng biến thiên như sau: Có bao nhiêu giá trị nguyên của tham số để phương trình có ít nhất 3 nghiệm phân biệt thuộc khoảng Đáp án đúng: A Giải thích chi tiết: Đặt.. Giá tr
Trang 1ĐỀ MẪU CÓ ĐÁP ÁN TOÁN 12
TOÁN 12
Thời gian làm bài: 40 phút (Không kể thời gian giao đề)
-Họ tên thí sinh:
Số báo danh:
Mã Đề: 044.
Câu 1
Cho hàm số có bảng biến thiên như sau:
Có bao nhiêu giá trị nguyên của tham số để phương trình có ít nhất 3 nghiệm phân biệt thuộc khoảng
Đáp án đúng: A
Giải thích chi tiết: Đặt Ta có
Bảng biến thiên
Trang 2Dựa vào bảng biến thiên ta có Vì m nguyên nên Do đó có
giá trị nguyên của m thỏa mãn đề bài.
Câu 2 Cho tứ diện có hai mặt phẳng và vuông góc với nhau Biết tam giác đều cạnh , tam giác vuông cân tại Tính bán kính mặt cầu ngoại tiếp tứ diện
Đáp án đúng: B
Trang 3Giải thích chi tiết:
Gọi là trọng tâm tam giác , là trung điểm cạnh Do và tam giác vuông cân tại nên là trục của đường tròn ngoại tiếp tam giác
Suy ra là tâm mặt cầu ngoại tiếp tứ diện và bán kính mặt cầu là:
Câu 3 Cho hàm số Biết rằng hình phẳng giới hạn bởi đồ thị hàm số và trục có diện tích phần nằm phía trên trục và phần nằm phía dưới trục bằng nhau Giá trị của là
Đáp án đúng: A
Giải thích chi tiết: Cho hàm số Biết rằng hình phẳng giới hạn bởi đồ thị hàm số và trục có diện tích phần nằm phía trên trục và phần nằm phía dưới trục bằng nhau Giá trị của là
A B C D .
Lời giải
Trang 4Ta có: ;
;
Để có diện tích phần trên và phần dưới thì hàm số phải có hai điểm cực trị Mặt khác
Hàm số bậc ba có đồ thị nhận điểm uốn là tâm đối xứng Do đó, để diện tích hai phần bằng nhau thì điểm uốn phải nằm trên trục hoành
Câu 4 Trong không gian , góc giữa hai vectơ và bằng
Đáp án đúng: A
Câu 5 Xét tứ diện có các cạnh và thay đổi Giá trị lớn nhất của thể tích khối tứ diện bằng
Đáp án đúng: C
Đáp án đúng: D
Giải thích chi tiết: Cho hai số dương và Đặt và Tìm khẳng định ĐÚNG.
Lời giải
;
Câu 7
Cho hàm số có bảng biến thiên như sau:
Trang 5Khẳng định nào sau đây sai?
A Hàm số nghịch biến trên khoảng
B Hàm số đồng biến trên khoảng
C Hàm số đồng biến trên các khoảng và
D Hàm số đồng biến trên khoảng
Đáp án đúng: B
Giải thích chi tiết: Cho hàm số có bảng biến thiên như sau:
Khẳng định nào sau đây sai?
A Hàm số đồng biến trên khoảng
B Hàm số đồng biến trên khoảng
C Hàm số đồng biến trên các khoảng và
D Hàm số nghịch biến trên khoảng
Lời giải
Đáp án đúng: B
Đáp án đúng: D
Trang 6
+ Với
Câu 10
Cho khối lăng trụ đứng có đáy là tam giác vuông cân tại , (với
), góc giữa đường thẳng và mặt phẳng bằng Thể tích của khối lăng trụ đã cho bằng
Đáp án đúng: D
Câu 11 Biểu thức có giá trị bằng:
Đáp án đúng: D
Câu 12 Cho Đặt , mệnh đề nào dưới đây đúng ?
Đáp án đúng: C
Câu 13 Cho một khối trụ có khoảng cách giữa hai đáy bằng 10, biết diện tích xung quanh của khối trụ bằng
Thể tích của khối trụ là:
Đáp án đúng: A
Giải thích chi tiết: Tìm giá trị lớn nhất của hàm số ?
A B C D .
Câu 14
Cho , là hai trong các số phức thỏa mãn điều kiện , đồng thời
Tập hợp các điểm biểu diễn của số phức trong mặt phẳng tọa độ là đường tròn có phương trình nào dưới đây?
Trang 7C D
Đáp án đúng: B
Giải thích chi tiết:
Gọi là điểm đối xứng của qua suy ra và là đường trung bình của tam giác
Vậy thuộc đường tròn tâm bán kính bằng và có phương trình
Câu 15 Số phức ( , ) là số phức có môđun nhỏ nhất trong tất cả các số phức thỏa điều kiện
, khi đó giá trị bằng
Đáp án đúng: A
Giải thích chi tiết: Từ suy ra
Ta có:
Đẳng thức xảy ra khi Khi đó
Câu 16
Trang 8Cho và Tính tích phân
Đáp án đúng: A
Câu 17 Tìm tất cả các họ nguyên hàm của hàm số
Đáp án đúng: C
Giải thích chi tiết:
Câu 18 Cho khối cầu có bán kính r = 2 Thể tích khối cầu đã cho là
Đáp án đúng: C
Giải thích chi tiết: Cho khối cầu có bán kính r = 2 Thể tích khối cầu đã cho là
Lời giải
Thể tích khối cầu bán kính r = 2 là
Câu 19 Cho hàm số Hàm số đã cho đạt cực tiểu tại , đạt cực đại tại đồng thời khi và chỉ khi:
Đáp án đúng: B
Giải thích chi tiết: Cho hàm số Hàm số đã cho đạt cực tiểu tại , đạt cực đại tại đồng thời khi và chỉ khi:
Lời giải
Trang 9Yêu cầu bài toán tương đương tìm để hàm số đã cho có hai cực trị.
Hàmsố đã cho có hai cực trị khi vàchỉ khi phương trình có hai nghiệm phân biệt và , khi đó:
Câu 20 Tính tích phân bằng cách đổi biến số, đặt thì bằng
Đáp án đúng: D
Giải thích chi tiết: Tính tích phân bằng cách đổi biến số, đặt thì bằng
Lời giải
Câu 21 Cho khối cầu có đường kính bằng Thể tích khối cầu đã cho bằng
Đáp án đúng: B
Câu 22 Cho số phức Tìm phần thực của số phức
Đáp án đúng: D
Giải thích chi tiết: Cho số phức Tìm phần thực của số phức
A B C D
Lời giải
Câu 23 Khối nón có đường kính đáy bằng và góc ở đỉnh bằng Đường sinh của khối nón bằng
Đáp án đúng: A
Giải thích chi tiết: [2H2-1.2-2] Khối nón có đường kính đáy bằng và góc ở đỉnh bằng Đường sinh của khối nón bằng
Trang 10A B C D .
Lời giải
FB tác giả: Mai Hoa
Gọi đường kính đáy của khối nón là , là đỉnh của khối nón Khi đó:
Khi đó: Tam giác vuông cân tại và ,
Đường sinh của khối nón là
Tọa độ giao điểm của và là
Đáp án đúng: C
Giải thích chi tiết: Trong không gian , cho đường thẳng và mặt phẳng
Tọa độ giao điểm của và là
Lời giải
Câu 25 Trong không gian , mặt phẳng có một vectơ pháp tuyến là
Đáp án đúng: A
Trang 11Câu 26 Cho lăng trụ đứng có đáy là tam giác vuông tại , , góc bằng Góc giữa đường thẳng và mặt phẳng bằng Bán kính mặt cầu ngoại tiếp tứ diện
bằng
Đáp án đúng: B
Giải thích chi tiết:
Trong tam giác vuông có:
Vì và hình chiếu của lên mặt phẳng là nên góc giữa đường thẳng và mặt phẳng bằng góc giữa hai đường thẳng và , và bằng góc ( vì tam giác vuông tại B
Trong tam giác vuông có:
Trong tam giác vuông có:
ra hai điểm , cùng nhìn dưới một góc vuông
Vậy bán kính mặt cầu ngoại tiếp tứ diện bằng
Câu 27 inh chóp túr giác đều có tất cả bao nhiêu mặt phắng đối xứng?
Đáp án đúng: D
Câu 28 Đồ thị hàm số có đường tiệm cận ngang là
Đáp án đúng: A
Câu 29 Hàm số nào sau đây có tối đa ba điểm cực trị.
Trang 12Đáp án đúng: D
tọa đồ là
Đáp án đúng: C
Giải thích chi tiết: Trong không gian , hình chiếu của điểm trên đường thẳng
có tọa đồ là
Lời giải
Gọi là hình chiếu của điểm trên đường thẳng
; đường thẳng có véc tơ chỉ phương
Câu 31 Trong không gian , cho mặt phẳng Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng ?
Đáp án đúng: C
Giải thích chi tiết: Trong không gian , cho mặt phẳng Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng ?
Lời giải
Câu 32 Tính tích phân
Đáp án đúng: C
Trang 13A B C D
Đáp án đúng: B
Vậy tập nghiệm của phương trình là
Câu 34 Một khối hộp chữ nhật có bao nhiêu đỉnh?
Đáp án đúng: C
Giải thích chi tiết: Một khối hộp chữ nhật có bao nhiêu đỉnh?
Lời giải
Một khối hộp chữ nhật có đỉnh
Câu 35 Cho khối hộp chữ nhật ABCD A ' B ' C ' D ' Hỏi mặt phẳng ( AB' C ' D) chia khối hộp đã cho thành bao nhiêu khối lăng trụ ?
Đáp án đúng: D
của tích phân bằng
Đáp án đúng: A
Giải thích chi tiết:
Lời giải
Ở đây các hàm xuất hiện dưới dấu tích phân là nên ta sẽ liên kết với bình phương
Với mỗi số thực ta có
Để tồn tại thì
Vậy
Câu 37
Trang 14Cho hình chóp có vuông góc với mặt phẳng , , tam giác
Đáp án đúng: D
Câu 38 Trong không gian với hệ tọa độ cho mặt phẳng Mặt phẳng có vectơ pháp tuyến là
Đáp án đúng: C
Câu 39 Cho tích phân Đặt , khẳng định nào sau đây đúng?
Đáp án đúng: C
Giải thích chi tiết: Cho tích phân Đặt , khẳng định nào sau đây đúng?
Lời giải
Đổi cận:
Trang 15
Câu 40 Cho hình chóp có đáy là hình thang vuông tại và Cạnh bên
và vuông góc với đáy Gọi là trung điểm của Bán kính mặt cầu ngoại tiếp chóp bằng
Đáp án đúng: D
Giải thích chi tiết:
Lời giải
Tam giác vuông tại nên
Chiều cao
Gọi là trung điểm Khi đó
Suy ra