Độ dài cạnh bằng Đáp án đúng: A Giải thích chi tiết: lần lượt là hình chiếu của trên.. Đáp án đúng: DGiải thích chi tiết: Trong không gian với hệ trục , mặt phẳng chứa trục và đi qua
Trang 1ĐỀ MẪU CÓ ĐÁP ÁN MÔN TOÁN 12
TOÁN 12
Thời gian làm bài: 40 phút (Không kể thời gian giao đề)
-Họ tên thí sinh:
Số báo danh:
Mã Đề: 005.
Đáp án đúng: A
Câu 2 Cho hình chóp có đáy là hình bình hành, các cạnh bên của hình chóp bằng ,
Khi thể tích khối chóp đạt giá trị lớn nhất, tính diện tích mặt cầu ngoại tiếp
Đáp án đúng: B
Giải thích chi tiết:
Gọi là giao điểm của và
Khi đó
Ta có:
Vậy hình bình hành là hình chữ nhật
Đặt
Xét vuông tại , ta có:
Thể tích khối chóp là:
Áp dụng bất đẳng thức : ta có:
Gọi là trung điểm của , trong kẻ đường trung trực của cắt tại
Trang 2Khi đó mặt cầu ngoại tiếp khối chóp có tâm và bán kính
Câu 3 Trong không gian , cho tam giác có , đường cao nằm trên đường thẳng
, phân giác trong của góc nằm trên đường thẳng Độ dài cạnh bằng
Đáp án đúng: A
Giải thích chi tiết:
lần lượt là hình chiếu của trên
Phương trình tham số của đường thẳng là
Do đó
Câu 4 Đạo hàm của hàm số
Trang 3C D
Đáp án đúng: A
Câu 5 Đạo hàm của hàm số là:
Đáp án đúng: B
Câu 6 Có bao nhiêu cách xếp bạn A, B, C, D, E, F vào một ghế dài sao cho bạn A, F ngồi ở đầu ghế?
Đáp án đúng: B
Giải thích chi tiết: Có bao nhiêu cách xếp bạn A, B, C, D, E, F vào một ghế dài sao cho bạn A, F ngồi ở
đầu ghế?
Hướng dẫn giải
Có cách xếp bạn A, F ngồi ở đầu ghế
Có cách xếp bạn vào vị trí còn lại
Vậy: Có (cách xếp)
Câu 7
Đáp án đúng: D
Câu 8
Cho hàm số có đồ thị như hình vẽ Đường tròn tâm có duy nhất một điểm chung với
Biết , diện tích của hình thang gần nhất với số nào sau đây
Đáp án đúng: D
Giải thích chi tiết: Cho hàm số có đồ thị như hình vẽ Đường tròn tâm có duy nhất một điểm chung với Biết , diện tích của hình thang gần nhất với số nào sau đây
Trang 4A B C D
Lời giải
Đường thẳng đi qua và song song với trục hoành cắt đồ thị tại
Gọi là tiếp tuyến của tại thì phương trình là
tiếp xúc với đường tròn tâm tại thì là tiếp tuyến chung của và đường tròn tâm
Vậy
Câu 9
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào?
Đáp án đúng: D
Câu 10
Đáp án đúng: D
Giải thích chi tiết: Dựa vào đồ thị ta thấy có 2 nghiệm
Suy ra
Trang 5Với
Lại có:
Câu 11 Trong không gian Oxyzcho ⃗OA=2⃗k−⃗i+⃗j Tọa độ điểm A là
Đáp án đúng: C
Câu 12 Diện tích của hình phẳng giới hạn bởi hai đường cong có phương trình và
bằng:
Đáp án đúng: D
Câu 13 Gọi là tập nghiệm của phương trình Tính tổng tất cả các phần tử của
Đáp án đúng: C
Câu 14 Số nghiệm của phương trình là
Đáp án đúng: B
Giải thích chi tiết:
Câu 15 Trên khoảng , đạo hàm của hàm số là
Đáp án đúng: C
Giải thích chi tiết: (MĐ 104 2020-2021 – ĐỢT 1) Trên khoảng , đạo hàm của hàm số là
Lời giải
Câu 16 Trong không gian với hệ trục , mặt phẳng chứa trục và đi qua điểm có phương trình dạng
Trang 6Đáp án đúng: D
Giải thích chi tiết: Trong không gian với hệ trục , mặt phẳng chứa trục và đi qua điểm
có phương trình dạng
Lời giải
pháp tuyến
Cách khác:
đi qua điểm nên ta có
Đáp án đúng: A
Lời giải
Ta có:
Câu 18 Cho hình nón (N )có bán kính đáy bằng 2a, độ dài đường sinh bằng 5a. Diện tích xung quanh của
(N ) bằng bao nhiêu ?
A 15π a2. B 10 π a2. C 20 π a2. D 45 π a2.
Đáp án đúng: B
Câu 19
Ông A đi làm lúc giờ sáng và đến cơ quan lúc giờ phút bằng xe gắn máy, trên đường đến cơ quan ông
A gặp một người nên ông A phải giảm tốc độ để đảm bảo an toàn rồi sau đó lại từ từ tăng tốc độ để đến cơ quan làm việc Hỏi quãng đường kể từ lúc ông A giảm tốc độ để tránh tai nạn cho đến khi tới cơ quan dài bao nhiêu mét?
(Đồ thị dưới đây mô tả vận tốc chuyển động của ông A theo thời gian khi đến cơ quan)
Trang 7A B C D
Đáp án đúng: B
Giải thích chi tiết: Quãng đường kể từ lúc ông A giảm tốc độ để tránh tai nạn cho đến khi tới cơ quan là
Trong đó:
+) là diện tích tam giác giới hạn bởi đồ thị hàm số và trục hoành trong khoảng thời gian từ giờ phút đến giờ phút
+) là diện tích hình thang giới hạn bởi đồ thị hàm số và trục hoành trong khoảng thời gian từ giờ phút đến giờ phút
Suy ra
Câu 20 Cho số phức Điểm biểu diễn số phức trên mặt phẳng phức là
Đáp án đúng: D
Giải thích chi tiết: Cho số phức Điểm biểu diễn số phức trên mặt phẳng phức là
Lời giải
Điểm biểu diễn số phức trên mặt phẳng phức là
Trang 8Đáp án đúng: D
Câu 22 Thể tích một khối cầu có đường kính bằng là
Đáp án đúng: A
Câu 23 Cho số phức , là các số phức cùng thoả mãn điều kiện Biết rằng giá trị lớn nhất có thể đạt được của là số thực Giá trị thuộc tập hợp nào trong các tập hợp dưới đây?
Đáp án đúng: A
Giải thích chi tiết:
Đặt
Ta có
* TH1: cùng thuộc một trong hai đường tròn
Khi đó:
Mà
Trang 9Nên
* TH2: Đặc biệt hoá như sau (*)
Ta có:
Câu 24
Đáp án đúng: B
Câu 25 Rút gọn biểu thức , với ta được
Đáp án đúng: D
Câu 26 Cho hình lăng trụ đứng tam giác có đáy ABC là tam giác đều cạnh a , Thể tích của khối lăng trụ là
Đáp án đúng: D
Đáp án đúng: C
A B C D .
Trang 10Lời giải
Câu 28
phẳng cắt đường thẳng tại Biết thể tích khối tứ diện là Thể tích khối hộp đã cho
bằng
Đáp án đúng: D
Giải thích chi tiết:
Lời giải
Gọi Theo tính chất của giao tuyến suy ra nên là trung điểm của Suy
ra lần lượt là trung điểm
Ta có
Mặt khác
Từ đó suy ra
Câu 29 Cho số phức z thoả mãn điều kiện (1−i) z=2+i Phần ảo của số phức z bằng
A − 1
Đáp án đúng: D
Câu 30 Cho tứ diện ABCD có thể tích bằng Trên cạnh CD lấy điểm M sao cho Tính thể tích
V của khối tứ diện ABCM
Đáp án đúng: B
Trang 11Câu 31 Cho hàm số Khẳng định nào dưới đây đúng?
Đáp án đúng: C
Câu 32 Cho tam giác vuông cân tại có cạnh Quay tam giác này xung quanh cạnh Thể tích của khối nón được tạo thành bằng:
Đáp án đúng: B
Câu 33 Trong không gian , cho và Vectơ có tọa độ là
Đáp án đúng: C
, lần lượt thuộc mặt cầu và mặt phẳng Biết rằng tạo với mặt phẳng một góc không đổi Nếu có độ dài lớn nhất thì tập hợp các điểm , cùng nằm trên một mặt cầu Tính thể tích của mặt cầu
Đáp án đúng: A
Giải thích chi tiết:
Dễ thấy, để có độ dài lớn nhất thì , , thằng hàng Vì , là các điểm tồn tại duy nhất nên là điểm tồn tại duy nhất
Trang 12Do đó ta chỉ cần xét tập hợp các điểm thuộc mặt phẳng
Do tam giác vuông cân tại với mọi thuộc mặt phẳng Do đó , thuộc mặt cầu tâm , bán kính
Câu 35 Trong không gian , cho tam giác nhọn có , , lần lượt là hình chiếu vuông góc của , , trên các cạnh , , Đường thẳng qua và vuông góc với mặt phẳng có phương trình là
Đáp án đúng: C
Giải thích chi tiết:
Ta có tứ giác là tứ giác nội tiếp đường tròn ( vì có hai góc vuông , cùng nhìn dưới một góc vuông) suy ra
Ta có tứ giác là tứ giác nội tiếp đường tròn ( vì có hai góc vuông , cùng nhìn dưới một góc vuông) suy ra
Trang 13Từ và suy ra do đó là đường phân giác trong của góc và là đường phân giác ngoài của góc
Tương tự ta chứng minh được là đường phân giác trong của góc và là đường phân giác ngoài của góc
Gọi , lần lượt là chân đường phân giác ngoài của góc và
Đường thẳng qua nhận làm vec tơ chỉ phương có phương trình
Đường thẳng qua nhận làm vec tơ chỉ phương có phương trình
Khi đó đường thẳng đi qua và vuông góc với mặt phẳng có véc tơ chỉ phương nên có
Nhận xét:
Mấu chốt của bài toán trên là chứng minh trực tâm của tam giác là tâm đường tròn nội tiếp tam giác Khi đó, ta tìm tọa độ điểm dựa vào tính chất quen thuộc sau: “Cho tam giác với là tâm
Ta cũng có thể tìm ngay tọa độ điểm bằng cách chứng minh là tâm đường tròn bàng tiếp góc của tam giác Khi đó, ta tìm tọa độ điểm dựa vào tính chất quen thuộc sau: “Cho tam giác với là
Câu 36
Đường cong nào ở bên dưới là đồ thị của hàm số y= ax+b
cx+d với a, b, c, d là các số thực.
Trang 14Mệnh đề nào dưới đây đúng ?
A y '>0, ∀ x≠ 1 B y '<0,∀ x≠ 1
C y '<0, ∀ x∈ R D y '>0, ∀ x∈ R
Đáp án đúng: B
Câu 37 Tập nghiệm của bất phương trình là
Đáp án đúng: A
Vậy tập nghiệm bất phương trình đã cho là:
Câu 38 Cho hình trụ tròn xoay có bán kính đáy là 2a, chiều cao là 3a Diện tích xung quanh hình trụ bằng
Đáp án đúng: A
Câu 39 Trong không gian với hệ tọa độ , cho Viết phương trình mặt phẳng cắt các trục tọa độ , lần lượt tại các điểm sao cho là trọng tâm tam giác
Đáp án đúng: B
Giải thích chi tiết: Trong không gian với hệ tọa độ , cho Viết phương trình mặt phẳng cắt các trục tọa độ , lần lượt tại các điểm sao cho là trọng tâm tam giác
Lời giải
Dó đó, phương trình mặt phẳng có dạng:
Vì là trọng tâm tam giác nên ta có:
Trang 15Vậy phương trình mặt phẳng :
Câu 40
Cho hàm số có đạo hàm trên và đồ thị như hình vẽ bên
khẳng định nào đúng
Đáp án đúng: B
Khảo sát ta có