Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là A 3 4[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là
A. 3
Câu 2 Giá trị nhỏ nhất của hàm số y= x
x2+ 1 trên tập xác định của nó là
A min
R
y= −1
2. B minR
R
y= 1
y= 0
Câu 3 Phương trình tiếp tuyến với đồ thị hàm số y= log5xtại điểm có hoành độ x= 5 là:
A y= x
5 ln 5− 1+ 1
5 ln 5 + 1
C y= x
5 ln 5−
1
5 ln 5 + 1 − 1
ln 5.
Câu 4 Biết F(x) là một nguyên hàm của hàm số f (x)= x
cos2x và F(
π
3)= √π
3
Tìm F(π
4)
A F(π
4)= π
4 + ln 2
2 . B F(
π
4)= π
3 + ln 2
2 . C F(
π
4)= π
4 −
ln 2
2 . D F(
π
4)= π
3 −
ln 2
2 .
Câu 5 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1
x là đúng?
A Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞) B Hàm số đồng biến trên R.
C Hàm số nghịch biến trên R D Hàm số nghịch biến trên (0;+∞)
Câu 6 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5 = 0 Bán kính R của (S) bằng bao nhiêu?
Câu 7 Công thức nào sai?
Câu 8 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0
Câu 9 Cho khối chóp S ABCD có đáy ABCD là hình vuông với AB = a, S A⊥(ABCD) và S A = 2a Thể tích của khối chóp đã cho bằng
A. 2a
3
3
3.
Câu 10 Nếu
6
R
1
f(x)= 2 vàR6
1
g(x)= −4 thìR6
1
( f (x)+ g(x)) bằng
Câu 11 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : x −2
−1 = x −1
A(2 ; 0 ; 3) Toạ độ điểm A′đối xứng với A qua đường thẳng d tương ứng là
A (10
2 ; −
4
3;
5
3). B (2 ; −3 ; 1). C (
8
3; −
2
3;
7
2
3; −
4
3;
5
3).
Câu 12 Tính thể tích V của khối tròn xoay khi quay hình phẳng giới hạn bởi đồ thị (C) : y = 4 − x2 và trục hoành quanh trục Ox
A V = 22π
5.
Trang 2Câu 13 Cho hàm số y= f (x) có bảng biến thiên như sau
Hàm số y= f (x) nghịch biến trên khoảng nào trong các khoảng dưới đây?
Câu 14 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
2F(0) − G(0)= 1, F(2) − 2G(2) = 4 và F(1) − G(1) = −1 Tính
e 2
R
1
f(ln x)
Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2+ (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y+ z + 6 = 0 Khẳng định nào sau đây đúng?
A (P) tiếp xúc mặt cầu (S ) B (P) cắt mặt cầu (S ).
C (P) không cắt mặt cầu (S ) D (P) đi qua tâm mặt cầu (S ).
Câu 16 Trên tập số phức, cho phương trình z2+ 2(m − 1)z + m2+ 2m = 0 Có bao nhiêu tham số m để phương trình đã cho có hai nghiệm phân biệt z1; z2thõa mãn
z1
2
+
z2
2
= 5
Câu 17 Những số nào sau đây vừa là số thực và vừa là số ảo?
A Chỉ có số 1 B 0 và 1 C Không có số nào D C.Truehỉ có số 0.
Câu 18 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?
Câu 19 Cho số phức z thỏa mãn z = (1+ i)(2 + i)
1 − i + (1 − i)(2 − i)
1+ i Trong tất cả các kết luận sau, kết luận nào đúng?
z. C z là số thuần ảo. D z= z
Câu 20 Tìm số phức liên hợp của số phức z= i(3i + 1)
Câu 21 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2
A |z1+ z2|= 1 B |z1+ z2|= √13 C |z1+ z2|= √5 D |z1+ z2|= 5
Câu 22 Cho z là một số phức Xét các mệnh đề sau :
I Nếu z= z thì z là số thực
II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z
Câu 23 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là
Câu 24 Đẳng thức nào đúng trong các đẳng thức sau?
A (1+ i)2018= 21009i B (1+ i)2018 = −21009i C (1+ i)2018 = −21009 D (1+ i)2018 = 21009
Câu 25 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 26 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng
định nào dưới đây đúng?
Câu 27 Tập nghiệm của bất phương trình 2x +1< 4 là
Câu 28 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là
A (−1; −2; −3) B (−2; −4; −6) C (2; 4; 6) D (1; 2; 3).
Trang 3Câu 29 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R2
0 f(2x) bằng
A. 3
3
Câu 30 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (−1; −2; −3) B (1; 2; −3) C (−1; 2; 3) D (1; −2; 3).
Câu 31 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Câu 32 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′
(x) bằng
A. 1
5
1
4
3.
Câu 33 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
A ln3
2
Câu 34 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 35 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
Câu 36 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Câu 37 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
Câu 38 Cho số phức z thỏa mãn1 − √5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A. 3
2 < |z| < 3 B. 1
2 < |z| < 2 C. 5
2 < |z| < 4 D 3 < |z| < 5.
Câu 39 Cho số phức z , 0 sao cho z không phải là số thực và w = z
1+ z2 là số thực Tính giá trị biểu thức |z|
1+ |z|2 bằng?
A. 1
√ 2
1
5.
Câu 40 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|
Câu 41 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω = 1
z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?
Câu 42 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2
1+z2
2+z2
3
Trang 4Câu 43 Cho lăng trụ đứng ABC.A′
B′C′có cạnh BC= 2a, góc giữa hai mặt phẳng (ABC) và (A′
BC)bằng
600Biết diện tích của tam giác∆A′BC bằng 2a2Tính thể tích V của khối lăng trụ ABC.A′B′C′
A V = 2a3
√ 3
3
Câu 44 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:
A −x+ 2y + 2z + 4 = 0 B 3x − 4y+ 6z + 34 = 0
C x − 2y − 2z − 4= 0 D x+ 2y + 2z + 8 = 0
Câu 45 Tâm I và bán kính R của mặt cầu (S ) : (x − 1)2+ (y + 2)2+ (z − 3)2 = 9 là:
A I(1; 2; −3); R = 3 B I(−1; 2; −3); R = 3 C I(1; 2; 3); R = 3 D I(1; −2; 3); R= 3
Câu 46 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là
A (0; 3] B (−∞; −3] ∪ [3; +∞) C (−∞; 3] D [−3; 3].
Câu 47 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình tham số của đường thẳng∆ là
C x= −2 + 4ty = −6tz = 1 + 2t D x= 2 + 2ty = −3tz = −1 + t
Câu 48 Trong các số phức z thỏa mãn
z − i
=
¯z − 2 − 3i
Hãy tìm z có môđun nhỏ nhất
A z= 27
5 + 6
5+ 27
5 −
6
5 −
27
5 i.
Câu 49 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn
z+ 4 − 8i
= 2√5
là đường tròn có phương trình:
A (x − 4)2+ (y + 8)2 = 20 B (x+ 4)2+ (y − 8)2 = 2√5
C (x − 4)2+ (y + 8)2 = 2√5 D (x+ 4)2+ (y − 8)2 = 20
Câu 50 Với a là số thực dương tùy ý, log5(5a) bằng
A 5 − log5a B 5+ log5a C 1+ log5a D 1 − log5a
Trang 5HẾT