Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Số nghiệm của phương trình 9x + 5 3x − 6 = 0 là A 0 B 4 C 2 D 1 Câu 2 Bấ[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Số nghiệm của phương trình 9x+ 5.3x
− 6= 0 là
Câu 2 Bất đẳng thức nào sau đây là đúng?
A (√3 − 1)e < (√3 − 1)π B 3−e > 2−e
Câu 3 Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3(x2+ x + 1) + 2x3 cắt đồ thị hàm
số y= 3x2+ log3x+ m là:
Câu 4 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E
A (0; 6; 0) B (−2; 0; 0) C (0; −2; 0) D (0; 2; 0).
Câu 5 Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?
Câu 6 Hàm số nào sau đây đồng biến trên R?
C y= √x2+ x + 1 − √x2− x+ 1 D y= x2
Câu 7 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng
Câu 8 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được
A Đường elip B Đường parabol C Đường tròn D Đường hypebol.
Câu 9 Choa,b là các số dương, a , 1sao cho logab= 2, giá trị của loga(a3b) bằng
Câu 10 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh
đươc chon tao thanh tam giac đêu la
A P= 1
220.
Câu 11 Tính thể tích V của khối tròn xoay khi quay hình phẳng giới hạn bởi đồ thị (C) : y = 4 − x2 và trục hoành quanh trục Ox
A V = 22π
5.
Câu 12 Cho khối chóp S ABCD có đáy ABCD là hình vuông với AB = a, S A⊥(ABCD) và S A = 2a Thể tích của khối chóp đã cho bằng
A. a
3
3
3
Câu 13 Tập nghiệm của bất phương trình 52x +3> −1 là
Câu 14 Có bao nhiêu số nguyên ysao cho ứng với mỗi số nguyên ycó tối đa 100 số nguyên xthỏa mãn
3y−2x ≥ log5(x+ y2)?
Trang 2Câu 15 Đạo hàm của hàm số y= (2x + 1)−
1
3 trên tập xác định là
A (2x+ 1)−
1
1
3 ln(2x+ 1)
C −2
3(2x+ 1)−
4
3(2x+ 1)−
4
3
Câu 16 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên
Số giá trị nguyên của tham số m để phương f (x+ m) = m có ba nghiệm phân biệt?
Câu 17 Cho số phức z thỏa 25
1+ i +
1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?
Câu 18 Cho các mệnh đề sau:
I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y
II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)
III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy
IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y
Câu 19 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là
Câu 20 Số phức z= 4+ 2i + i2017
2 − i có tổng phần thực và phần ảo là
Câu 21 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức
z1+ z2
z1
là
Câu 22 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?
Câu 23 Số phức z= (1+ i)2017
21008i có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 24 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là
Câu 25 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 26 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng
định nào dưới đây đúng?
Câu 27 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (1; 2; −3) B (−1; 2; 3) C (−1; −2; −3) D (1; −2; 3).
Câu 28 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π
3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng
√
5 .
Trang 3Câu 29 NếuR2
0 f(x)= 4 thì R2
0[1
2f(x) − 2] bằng
Câu 30 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón
đã cho bằng
A. 2
Câu 31 Trong không gian Oxyz, cho đường thẳng d : x −1
−1 = z+ 3
−2 Điểm nào dưới đây thuộc d?
A P(1; 2; 3) B M(2; −1; −2) C Q(1; 2; −3) D N(2; 1; 2).
Câu 32 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?
A.R f(x)= −sinx + x2
C.R f(x)= sinx + x2
Câu 33 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′(x)= lnx B F′(x)= 1
′
(x)= −1
x2 D F′(x)= 2
x2
Câu 34 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 2 B |w|min= 1
2. C |w|min = 1 D |w|min = 3
2.
Câu 35 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2
√ 2
3 . B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8
3. D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1
Câu 36 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
2.
Câu 37 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A. 3
1
2 < |z| < 3
2. C |z| <
1
2. D |z| > 2.
Câu 38 Cho số phức z thỏa mãn z không phải là số thực và ω= z
2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là
Câu 39 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức
P= |z1+ z2|
A P=
√
3
√ 2
Câu 40 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và
z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|
A T = 2√13 B T = 4√13 C T = 2
√ 85
√ 97
Trang 4Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P =
|z|2− 22 B P =
|z|2− 42 C P= (|z| − 2)2 D P= (|z| − 4)2
Câu 42 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1 + 1
z2 = 1
z1+ z2
Tính giá trị biểu thức P=
z1
z2
+
z2
z1
A. 3
√
2
1
√
√ 2
Câu 43 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn
z+ 4 − 8i
= 2√5
là đường tròn có phương trình:
A (x − 4)2+ (y + 8)2 = 2√5 B (x − 4)2+ (y + 8)2 = 20
C (x+ 4)2+ (y − 8)2 = 2√5 D (x+ 4)2+ (y − 8)2 = 20
Câu 44 Tìm đạo hàm của hàm số: y= (x2+ 1)
3 2
A. 3
2(2x)
1
2(x
2+ 1)
1
2 C 3x(x2+ 1)
1
4x
−1
4
Câu 45 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?
A.→−n = (2; −3; 4) B.→−n = (2; 3; −4) C.→−n = (−2; 3; 1) D.→−n = (−2; 3; 4)
Câu 46 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh của hình trụ
Câu 47 Tính đạo hàm của hàm số y= 2023x
A y′ = 2023x
ln x C y′ = x.2023x−1 D y′ = 2023x
ln 2023
Câu 48 Cho hàm số y= f (x) có bảng biến thiên như sau :
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 49 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình tham số của đường thẳng∆ là
A x= −2 + 4ty = −6tz = 1 + 2t B x= 4 + 2ty = −3tz = 2 + t
C x= 2 + 2ty = −3tz = −1 + t D x= −2 + 2ty = −3tz = 1 + t
Câu 50 Thể tích khối lập phương có cạnh 3a là:
Trang 5HẾT