1. Trang chủ
  2. » Tất cả

Đề kiểm tra thpt môn toán (810)

5 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề Kiểm Tra Thpt Môn Toán
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Định dạng
Số trang 5
Dung lượng 126,11 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho M(2; 3;−1) Tìm tọa độ điểm M′đối[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M′đối xứng với M qua mặt phẳng Oxz?

A M

(−2; −3; −1) B M

(2; −3; −1)

Câu 2 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3

2, ((ℵ) có đỉnh thuộc (S ) và đáy

là đường tròn nằm hoàn toàn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn nhất

√ 3π

3.

Câu 3 Công thức nào sai?

Câu 4 Cho lăng trụ đều ABC.A

B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′

A. √2a

a

√ 5a

√ 3a

2 .

Câu 5 Phương trình tiếp tuyến với đồ thị hàm số y= log5xtại điểm có hoành độ x= 5 là:

A y= x

5 ln 5+ 1 − 1

5 ln 5 −

1

ln 5.

C y= x

5 ln 5 − 1+ 1

ln 5.

Câu 6 Số nghiệm của phương trình 9x+ 5.3x

− 6= 0 là

Câu 7 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là

4πR3

Câu 8 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y= −x2+ 2mx − 1 − 2m trên đoạn [−1; 2] nhỏ hơn 2

A −1 < m < 7

Câu 9 Cho hàm số y = f (x) xác định trên tập R và có f′(x) = x2− 5x+ 4 Khẳng định nào sau đây đúng?

A Hàm số đã cho nghịch biến trên khoảng (1; 4).

B Hàm số đã cho đồng biến trên khoảng (1; 4).

C Hàm số đã cho đồng biến trên khoảng (−∞; 3).

D Hàm số đã cho nghịch biến trên khoảng (3;+∞)

Câu 10 Cho khối chóp S ABCD có đáy ABCD là hình vuông với AB = a, S A⊥(ABCD) và S A = 2a Thể tích của khối chóp đã cho bằng

3

2a3

3 .

Câu 11 BiếtR f(x)dx= sin 3x + C Mệnh đề nào sau đây là mệnh đề đúng?

A f (x)= −3 cos 3x B f (x)= cos 3x

3 . C f (x)= −cos 3x

3 . D f (x)= 3 cos 3x

Trang 2

Câu 12 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2

d2 : x −4

−2 Gọi mặt phẳng (P) là chứa d1 và (P)song song với đường thẳng d2 Khoảng cách từ điểm M(1; 1; 1) đến (P) bằng

3

2

3√10.

Câu 13 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : x −2

−1 = x −1

A(2 ; 0 ; 3) Toạ độ điểm A′đối xứng với A qua đường thẳng d tương ứng là

A (10

2 ; −

4

3;

5

3). B (2 ; −3 ; 1). C (

8

3; −

2

3;

7

2

3; −

4

3;

5

3).

Câu 14 Cho hình thang cong (H) giới hạn bởi các đường y = √x, y = 0, x = 0, x = 4 Đường thẳng

x= k (0 < k < 4) chia hình (H) thành hai phần có diện tích là S1và S2như hình vẽ Để S1= 4S2 thì giá trị k thuộc khoảng nào sau đây?

A (3, 1; 3, 3)· B (3, 7; 3, 9)· C (3, 3; 3, 5)· D (3, 5; 3, 7)·.

Câu 15 Cho hàm số y = f (x) là hàm số bậc 3 và có đồ thị như hình vẽ Giá trị cực tiểu của hàm số đã cho bằng

Câu 16 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên

Số giá trị nguyên của tham số m để phương f (x+ m) = m có ba nghiệm phân biệt?

Câu 17 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?

A z+ z = 2bi B z − z = 2a C z · z= a2− b2 D |z2|= |z|2

Câu 18 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là

Câu 19 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 20 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z

A Phần thực là 3 và phần ảo là 2i B Phần thực là −3 và phần ảo là−2.

C Phần thực là3 và phần ảo là 2 D Phần thực là−3 và phần ảo là −2i.

Câu 21 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?

Câu 22 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A −29

29

11

11

13.

Câu 23 Trong các kết luận sau, kết luận nào sai

A Mô-đun của số phức z là số thực B Mô-đun của số phức z là số thực không âm.

C Mô-đun của số phức z là số phức D Mô-đun của số phức z là số thực dương.

Câu 24 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức

z1+ z2

z1

Câu 25 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|= 34 B |z|= √34 C |z|= 5

√ 34

√ 34

3 .

Câu 26 NếuR2

0 f(x)= 4 thì R02[1

2f(x) − 2] bằng

Trang 3

Câu 27 Cho hàm số y = f (x) có đạo hàm f′

(x)= (x − 2)2

(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 28 NếuR4

−1 f(x)= 2 và R−14 g(x)= 3 thì R−14[ f (x)+ g(x)] bằng

Câu 29 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng

định nào dưới đây đúng?

Câu 30 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên)

Góc giữa hai mặt phẳng (S BC) và (ABC) bằng

Câu 31 Cho hàm số y= f (x) có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Câu 32 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

A. 11

1

3.

Câu 33 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =

x3+ (a + 2)x + 9 − a2

đồng biến trên khoảng (0; 1)?

Câu 34 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 9

4;+∞

!

4;

5 4

!

4

!

2;

9 4

!

Câu 35 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

√ 2

1

1

5.

Câu 36 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2

1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?

A. 5

2 < |z| < 7

1

2 < |z| < 3

3

2 < |z| < 2 D 2 < |z| < 5

2.

Câu 37 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min= 1

2. B |w|min= 2 C |w|min = 1 D |w|min = 3

2.

Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P=

|z|2− 42 B P= (|z| − 2)2 C P = (|z| − 4)2 D P =

|z|2− 22

Câu 39 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Trang 4

Câu 40 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =

√ 2

2 và điểm A trong hình vẽ bên là điểm biểu diễn z

Biết rằng điểm biểu diễn số phức ω = 1

iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn

số phức ω là

Câu 41 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

A |z|= 1 B |z|= 1

Câu 42 Gọi z1; z2 là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 43 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình tham số của đường thẳng∆ là

Câu 44. R 6x5dxbằng

6x

Câu 45 Tìm nguyên hàm của hàm số f (x)= cos 3x

A.R cos 3xdx= −sin 3x

Câu 46 Thể tích khối lập phương có cạnh 3a là:

Câu 47 Cho hàm số y= f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong hình vẽ bên Điểm cực tiểu của đồ thị hàm số y= f (x) là

Câu 48 Hàm số y = (x + m)3+ (x + n)3 − x3 đồng biến trên khoảng (−∞; +∞) Giá trị nhỏ nhất của biểu thức P= 4(m2+ n2) − m − n bằng

−1

16.

Câu 49 Tính đạo hàm của hàm số y= 2023x

A y′ = 2023x

ln 2023 B y′ = x.2023x−1 C y′ = 2023x

ln x D y′ = 2023x

Câu 50 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M sao cho

3MA2+ 2MB2− MC2đạt giá trị nhỏ nhất

A M(3

4;

1

3

4;

1

3

4;

3

3

4; 1

2; 2).

Trang 5

HẾT

Ngày đăng: 05/04/2023, 11:18

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN