Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho M(2; 3;−1) Tìm tọa độ điểm M′đối[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M′đối xứng với M qua mặt phẳng Oxz?
A M′
(−2; −3; −1) B M′
(2; −3; −1)
Câu 2 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3
2, ((ℵ) có đỉnh thuộc (S ) và đáy
là đường tròn nằm hoàn toàn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn nhất
√ 3π
√
3.
Câu 3 Công thức nào sai?
Câu 4 Cho lăng trụ đều ABC.A′
B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′
A. √2a
a
√
√ 5a
√ 3a
2 .
Câu 5 Phương trình tiếp tuyến với đồ thị hàm số y= log5xtại điểm có hoành độ x= 5 là:
A y= x
5 ln 5+ 1 − 1
5 ln 5 −
1
ln 5.
C y= x
5 ln 5 − 1+ 1
ln 5.
Câu 6 Số nghiệm của phương trình 9x+ 5.3x
− 6= 0 là
Câu 7 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là
4πR3
Câu 8 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y= −x2+ 2mx − 1 − 2m trên đoạn [−1; 2] nhỏ hơn 2
A −1 < m < 7
Câu 9 Cho hàm số y = f (x) xác định trên tập R và có f′(x) = x2− 5x+ 4 Khẳng định nào sau đây đúng?
A Hàm số đã cho nghịch biến trên khoảng (1; 4).
B Hàm số đã cho đồng biến trên khoảng (1; 4).
C Hàm số đã cho đồng biến trên khoảng (−∞; 3).
D Hàm số đã cho nghịch biến trên khoảng (3;+∞)
Câu 10 Cho khối chóp S ABCD có đáy ABCD là hình vuông với AB = a, S A⊥(ABCD) và S A = 2a Thể tích của khối chóp đã cho bằng
3
2a3
3 .
Câu 11 BiếtR f(x)dx= sin 3x + C Mệnh đề nào sau đây là mệnh đề đúng?
A f (x)= −3 cos 3x B f (x)= cos 3x
3 . C f (x)= −cos 3x
3 . D f (x)= 3 cos 3x
Trang 2Câu 12 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2
d2 : x −4
−2 Gọi mặt phẳng (P) là chứa d1 và (P)song song với đường thẳng d2 Khoảng cách từ điểm M(1; 1; 1) đến (P) bằng
3
√
2
3√10.
Câu 13 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : x −2
−1 = x −1
A(2 ; 0 ; 3) Toạ độ điểm A′đối xứng với A qua đường thẳng d tương ứng là
A (10
2 ; −
4
3;
5
3). B (2 ; −3 ; 1). C (
8
3; −
2
3;
7
2
3; −
4
3;
5
3).
Câu 14 Cho hình thang cong (H) giới hạn bởi các đường y = √x, y = 0, x = 0, x = 4 Đường thẳng
x= k (0 < k < 4) chia hình (H) thành hai phần có diện tích là S1và S2như hình vẽ Để S1= 4S2 thì giá trị k thuộc khoảng nào sau đây?
A (3, 1; 3, 3)· B (3, 7; 3, 9)· C (3, 3; 3, 5)· D (3, 5; 3, 7)·.
Câu 15 Cho hàm số y = f (x) là hàm số bậc 3 và có đồ thị như hình vẽ Giá trị cực tiểu của hàm số đã cho bằng
Câu 16 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên
Số giá trị nguyên của tham số m để phương f (x+ m) = m có ba nghiệm phân biệt?
Câu 17 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A z+ z = 2bi B z − z = 2a C z · z= a2− b2 D |z2|= |z|2
Câu 18 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là
Câu 19 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 20 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z
A Phần thực là 3 và phần ảo là 2i B Phần thực là −3 và phần ảo là−2.
C Phần thực là3 và phần ảo là 2 D Phần thực là−3 và phần ảo là −2i.
Câu 21 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?
Câu 22 Phần thực của số phức z= 4 − 2i
2 − i + (1 − i)(2+ i)
A −29
29
11
11
13.
Câu 23 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số thực B Mô-đun của số phức z là số thực không âm.
C Mô-đun của số phức z là số phức D Mô-đun của số phức z là số thực dương.
Câu 24 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức
z1+ z2
z1
là
Câu 25 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1
A |z|= 34 B |z|= √34 C |z|= 5
√ 34
√ 34
3 .
Câu 26 NếuR2
0 f(x)= 4 thì R02[1
2f(x) − 2] bằng
Trang 3Câu 27 Cho hàm số y = f (x) có đạo hàm f′
(x)= (x − 2)2
(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 28 NếuR4
−1 f(x)= 2 và R−14 g(x)= 3 thì R−14[ f (x)+ g(x)] bằng
Câu 29 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng
định nào dưới đây đúng?
Câu 30 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên)
Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
Câu 31 Cho hàm số y= f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Câu 32 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
A. 11
1
3.
Câu 33 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 34 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 9
4;+∞
!
4;
5 4
!
4
!
2;
9 4
!
Câu 35 Cho số phức z , 0 sao cho z không phải là số thực và w = z
1+ z2 là số thực Tính giá trị biểu thức |z|
1+ |z|2 bằng?
√ 2
1
1
5.
Câu 36 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A. 5
2 < |z| < 7
1
2 < |z| < 3
3
2 < |z| < 2 D 2 < |z| < 5
2.
Câu 37 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 1
2. B |w|min= 2 C |w|min = 1 D |w|min = 3
2.
Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P=
|z|2− 42 B P= (|z| − 2)2 C P = (|z| − 4)2 D P =
|z|2− 22
Câu 39 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2
1+z2
2+z2
3
Trang 4Câu 40 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Câu 41 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
A |z|= 1 B |z|= 1
Câu 42 Gọi z1; z2 là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 43 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình tham số của đường thẳng∆ là
Câu 44. R 6x5dxbằng
6x
Câu 45 Tìm nguyên hàm của hàm số f (x)= cos 3x
A.R cos 3xdx= −sin 3x
Câu 46 Thể tích khối lập phương có cạnh 3a là:
Câu 47 Cho hàm số y= f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong hình vẽ bên Điểm cực tiểu của đồ thị hàm số y= f (x) là
Câu 48 Hàm số y = (x + m)3+ (x + n)3 − x3 đồng biến trên khoảng (−∞; +∞) Giá trị nhỏ nhất của biểu thức P= 4(m2+ n2) − m − n bằng
−1
16.
Câu 49 Tính đạo hàm của hàm số y= 2023x
A y′ = 2023x
ln 2023 B y′ = x.2023x−1 C y′ = 2023x
ln x D y′ = 2023x
Câu 50 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M sao cho
3MA2+ 2MB2− MC2đạt giá trị nhỏ nhất
A M(3
4;
1
3
4;
1
3
4;
3
3
4; 1
2; 2).
Trang 5HẾT