Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho M(2;−3;−1), N(2;−1; 1) Tìm tọa đ[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E
A (−2; 0; 0) B (0; −2; 0) C (0; 2; 0) D (0; 6; 0).
Câu 2 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1
x là đúng?
A Hàm số nghịch biến trên (0;+∞) B Hàm số đồng biến trên R.
C Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞) D Hàm số nghịch biến trên R.
Câu 3 Cho lăng trụ đều ABC.A′
B′C′ có đáy bằng a, AA′ = 4√3a Thể tích khối lăng trụ đã cho là:
Câu 4 Bất đẳng thức nào sau đây là đúng?
C (√3 − 1)e < (√3 − 1)π D (√3+ 1)π > (√3+ 1)e
Câu 5 Cho hàm số y= ax+ b
cx+ d có đồ thị như hình vẽ bên Kết luận nào sau đây là sai?
A ab < 0 B ac < 0 C ad > 0 D bc > 0
Câu 6 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0
A. 13
Câu 7 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp là:
A VS.ABC =
√ 3ab2
2
q
b2− √3a2
C VS.ABC =
√ 3a2b
√ 3b2− a2
Câu 8 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3
2, ((ℵ) có đỉnh thuộc (S ) và đáy
là đường tròn nằm hoàn toàn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn nhất
A. 4
√
3π
2π
√
3.
Câu 9 Tính thể tích V của khối tròn xoay khi quay hình phẳng giới hạn bởi đồ thị (C) : y = 4 − x2 và trục hoành quanh trục Ox
A V = 4
15 .
Câu 10 Cho hai số phức u, v thỏa mãn
u
= v
= 10 và
3u − 4v
= 50 Tìm giá trị lớn nhất của biểu thức
4u+ 3v − 8 + 6i
Câu 11 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn log4(9x2 + 16y2 + 112y) + log3(9x2 + 16y2) < log4y+ log3(684x2+ 1216y2+ 720y)?
Trang 2Câu 12 Cho hình chóp đều S ABCD có cạnh đáy bằng a√2 và đường cao S H bằng a
√ 2
2 Tính góc giữa mặt bên (S DC) và mặt đáy
Câu 13 Đường thẳng y= 2 là tiệm cận ngang của đồ thị nào dưới đây?
A y= 2
−2x+ 3
x+ 2 .
Câu 14 Tập nghiệm của bất phương trình 52x +3 > −1 là
Câu 15 Cho số phức z1= 3 − 4i; z2 = 1 − i, phần ảo của số phức z1.z2bằng
Câu 16 BiếtR f(x)dx= sin 3x + C Mệnh đề nào sau đây là mệnh đề đúng?
A f (x)= −3 cos 3x B f (x)= −cos 3x
3 . C f (x)= 3 cos 3x D f (x)= cos 3x
Câu 17 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là
Câu 18 Đẳng thức nào đúng trong các đẳng thức sau?
A (1+ i)2018= −21009 B (1+ i)2018 = −21009i C (1+ i)2018 = 21009 D (1+ i)2018 = 21009i
Câu 19 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số thực dương B Mô-đun của số phức z là số thực không âm.
C Mô-đun của số phức z là số phức D Mô-đun của số phức z là số thực.
Câu 20 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z
A Phần thực là3 và phần ảo là 2 B Phần thực là −3 và phần ảo là−2.
C Phần thực là−3 và phần ảo là −2i D Phần thực là 3 và phần ảo là 2i.
Câu 21 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1
A |z|=
√
34
√ 34
Câu 22 Tìm số phức liên hợp của số phức z= i(3i + 1)
Câu 23 Cho số phức z thỏa mãn z= 4(−3+ i)
1 − 2i + (3 − i)2
−i Mô-đun của số phức w= z − iz + 1 là
A |w|= 6√3 B |w|= 4√5 C |w|= √85 D |w|= √48
Câu 24 Cho các mệnh đề sau:
I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y
II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)
III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy
IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y
Câu 25 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là
A −22016 B −21008+ 1 C −21008 D 21008
Câu 26 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình bên.
Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Câu 27 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón
đã cho bằng
Trang 3Câu 28 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Câu 29 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R2
0 f(2x) bằng
3
4.
Câu 30 Cho khối lăng trụ đứng ABC · A′B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng
√ 6
3 a, thể tích khối lăng trụ đã cho bằng
A.
√
2
4 a
√ 2
6 a
√ 2
2 a
3
Câu 31 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x −3
x −1. B y= x4− 3x2+ 2 C y= x2− 4x+ 1 D y= x3− 3x − 5
Câu 32 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4+ 6x2+ mx có ba điểm cực trị?
Câu 33 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên
Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
Câu 34 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1 + 1
z2 = 1
z1+ z2
Tính giá trị biểu thức P=
z1
z2
+
z2
z1
A. 3
√
2
1
√
√ 2
Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P=
|z|2− 42 B P= (|z| − 2)2 C P = (|z| − 4)2 D P =
|z|2− 22
Câu 36 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
1 + z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 37 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 38 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Câu 39 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
A |z|= 1
Câu 40 Cho số phức z thỏa mãn1 − √5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A 3 < |z| < 5 B. 5
2 < |z| < 4 C. 1
2 < |z| < 2 D. 3
2 < |z| < 3
Câu 41 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Trang 4Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Câu 42 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
Câu 43 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình tham số của đường thẳng∆ là
A x= −2 + 4ty = −6tz = 1 + 2t B x= 2 + 2ty = −3tz = −1 + t
Câu 44 Biết rằng phương trình log22x −7log2x+ 9 = 0 có 2 nghiệm x1, x2 Giá trị của x1x2bằng
Câu 45 Cho số phức z= a + bi (a, b ∈ R) thỏa mãn z + 1 + 3i −
z
i= 0 Tính S = 2a + 3b
Câu 46 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?
A y= x4− 2x2+ 2 B y= −x4+ 2x2+ 2 C y= x3− 3x2+ 2 D y= −x3+ 3x2+ 2
Câu 47 Tìm tất cả các giá trị thực của tham số mđể hàm số y= (m + 1)x4− mx2+ 3
2 chỉ có cực tiểu mà không có cực đại
A m > 1 B −1 ≤ m < 0 C m < −1 D −1 ≤ m ≤ 0.
Câu 48 Cho tam giác nhọn ABC, biết rằng khi quay tam giác này quanh các cạnh AB, BC, CA ta lần
lượt được các hình tròn xoay có thể tích là 672π, 3136π
9408π
13 .Tính diện tích tam giác ABC.
Câu 49 Cho hàm số có bảng biến thiên:
Khẳng định nào sau đây là đúng?
A Hàm số đạt cực đại tại B Hàm số đạt cực đại tại
C Hàm số đạt cực đại tại D Hàm số đạt cực đại tại
Câu 50 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = x2và đường thẳng y = mx với m , 0 Hỏi
có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20
Trang 5HẾT