Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được A[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được
A Đường elip B Đường tròn C Đường parabol D Đường hypebol.
Câu 2 Cho số thực dươngm Tính I = Rm
0
dx
x2+ 3x + 2 theo m?
A I = ln(m+ 2
m+ 1). B I = ln(
m+ 2 2m+ 2). C I = ln(
m+ 1
m+ 2). D I = ln(
2m+ 2
m+ 2 ).
Câu 3 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó bằng
A 2π
√
√
Câu 4 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?
A. √5
a< √5
√
2> b√2
Câu 5 Công thức nào sai?
Câu 6 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E
A (0; 6; 0) B (0; 2; 0) C (0; −2; 0) D (−2; 0; 0).
Câu 7 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y= −x2+ 2mx − 1 − 2m trên đoạn [−1; 2] nhỏ hơn 2
A −1 < m < 7
Câu 8 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây là đúng?
A |→−u | = 9 B |→−u |= √3 C |→−u |= 3
D |→−u |= 1
Câu 9 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) và mặt phẳng (P) : 2x+2y−z+9 = 0 Đường thẳng d đi qua A và có vectơ chỉ phương ⃗u = (3; 4; −4) cắt (P) tại B Điểm M thay đổi trong (P) sao cho M luôn nhìn đoạn AB dưới góc 90o Khi độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào trong các điểm sau?
A K(3; 0; 15) B J(−3; 2; 7) C H(−2; −1; 3) D I(−1; −2; 3).
Câu 10 Đạo hàm của hàm số y= (2x + 1)−
1
3 trên tập xác định là
A −1
3(2x+ 1)−
4
1
3 ln(2x+ 1)
C −2
3(2x+ 1)−
4
1
3 ln(2x+ 1)
Câu 11 Bất phương trình log2021(x − 1) ≤ 0 có bao nhiêu nghiệm nguyên?
Câu 12 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2
d2 : x −4
3 = z+ 2
−2 Gọi mặt phẳng (P) là chứa d1và (P)song song với đường thẳng d2 Khoảng cách từ điểm M(1; 1; 1) đến (P) bằng
Trang 2A. √3
5.
3√10.
D. √1
53.
Câu 13 Cho hình chóp đều S ABCD có cạnh đáy bằng a Tính khoảng cách từ điểm A đến mặt phẳng
(S BD) theo a
A. a
√
√ 2
Câu 14 Tổng tất cả các nghiệm của phương trình log2(6 − 2x)= 1 − x bằng
Câu 15 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : x −2
−1 = x −1
A(2 ; 0 ; 3) Toạ độ điểm A′đối xứng với A qua đường thẳng d tương ứng là
A (8
3; −
2
3;
7
3). B (2 ; −3 ; 1). C (
2
3; −
4
3;
5
10
2 ; −
4
3;
5
3).
Câu 16 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên
Số giá trị nguyên của tham số m để phương f (x+ m) = m có ba nghiệm phân biệt?
Câu 17 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là
A −1 ≤ m ≤ 0 B m ≥ 0 hoặc m ≤ −1 C 0 ≤ m ≤ 1 D m ≥ 1 hoặc m ≤ 0 Câu 18 Số phức z= (1+ i)2017
21008i có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 19 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z
A Phần thực là−3 và phần ảo là −2i B Phần thực là −3 và phần ảo là−2.
C Phần thực là 3 và phần ảo là 2i D Phần thực là3 và phần ảo là 2.
Câu 20 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là
Câu 21 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là
Câu 22 Phần thực của số phức z= 4 − 2i
2 − i + (1 − i)(2+ i)
A. 29
11
29
11
13.
Câu 23 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A z − z = 2a B z+ z = 2bi C z · z= a2− b2 D |z2|= |z|2
Câu 24 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 25 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1
A |z|= 5
√
34
√ 34
Câu 26 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị?
Câu 27 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là
Câu 28 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Trang 3Câu 29 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và
S A= 3 (tham khảo hình bên)
Thể tích khối chóp đã cho bằng
Câu 30 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là
Câu 31 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (−1; 2; 3) B (−1; −2; −3) C (1; 2; −3) D (1; −2; 3).
Câu 32 NếuR2
0 f(x)= 4 thì R2
0[1
2f(x) − 2] bằng
Câu 33 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+
y2+ 24x)?
Câu 34 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|
A T = 2
√
85
√ 97
Câu 35 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 1
4;
5
4
!
2;
9 4
!
4;+∞
!
4
!
Câu 36 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Câu 37 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức
S = a + 2b
Câu 38 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
1 + z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 39 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
Câu 40 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A. 3
2 < |z| < 2 B. 1
2 < |z| < 3
2. C 2 < |z| <
5
5
2 < |z| < 7
2.
Trang 4Câu 41 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1 + 1
z2 = 1
z1+ z2 Tính giá trị biểu thức P=
z1 z2
+
z2 z1
√ 2
√
2.
Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P = (|z| − 4)2
|z|2− 22 C P=
|z|2− 42 D P= (|z| − 2)2
Câu 43 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?
A y= x3− 3x2+ 2 B y= x4− 2x2+ 2 C y= −x3+ 3x2+ 2 D y= −x4+ 2x2+ 2
Câu 44 Trong các số phức z thỏa mãn
z − i
=
¯z − 2 − 3i
Hãy tìm z có môđun nhỏ nhất
A z= 3
5 −
6
5 + 6
5+ 27
5 −
27
5 i.
Câu 45 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M sao cho
3MA2+ 2MB2− MC2đạt giá trị nhỏ nhất
A M(3
4;
1
3
4;
1
3
4;
3
3
4;
1
2; 2).
Câu 46 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+ 1
1 = z −2
1 Viết phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox
A (P) : y − z + 2 = 0 B (P) : x − 2y + 1 = 0 C (P) : x − 2z + 5 = 0 D (P) : y + z − 1 = 0.
Câu 47 Cho lăng trụ đứng ABC.A′
B′C′có cạnh BC= 2a, góc giữa hai mặt phẳng (ABC) và (A′
BC)bằng
600Biết diện tích của tam giác∆A′
BC bằng 2a2Tính thể tích V của khối lăng trụ ABC.A′
B′C′
A V = 2a3
√ 3
3
Câu 48 Một hộp chứa sáu quả cầu trắng và bốn quả cầu đen Lấy ngẫu nhiên đồng thời bốn quả Tính
xác suất sao cho có ít nhất một quả màu trắng
A. 8
1
209
1
21.
Câu 49 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?
A. 1
√ 3
√ 3
√ 15
5 .
Câu 50 Tập nghiệm của bất phương trình log3(10 − 3x+1) ≥ 1 − x chứa mấy số nguyên
Trang 5HẾT