1. Trang chủ
  2. » Tất cả

Đề kiểm tra thpt môn toán (804)

5 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Định dạng
Số trang 5
Dung lượng 125,85 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho số thực dươngm Tính I = m∫ 0 dx x2 + 3x + 2 theo m? A I = ln( 2m + 2[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho số thực dươngm Tính I =

m

R

0

dx

x2+ 3x + 2 theo m?

A I = ln(2m+ 2

m+ 2 ). B I = ln(

m+ 2 2m+ 2). C I = ln(

m+ 2

m+ 1). D I = ln(

m+ 1

m+ 2).

Câu 2 Biết F(x) là một nguyên hàm của hàm số f (x)= x

cos2x và F(

π

3)= √π

3 Tìm F(

π

4)

A F(π

4)= π

4 + ln 2

2 . B F(

π

4)= π

3 + ln 2

2 . C F(

π

4)= π

3 −

ln 2

2 . D F(

π

4)= π

4 −

ln 2

2 .

Câu 3 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp là:

A VS.ABC = a

2

q

b2− √3a2

√ 3a2b

12 .

C VS.ABC =

√ 3ab2

√ 3b2− a2

Câu 4 Hàm số nào sau đây đồng biến trên R?

C y= √x2+ x + 1 − √x2− x+ 1 D y= x2

Câu 5 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C là một

điểm trên mặt phẳng (P):x+ z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN

để tứ giác ABCD là hình thoi Tọa độ điểm C là:

A C(6; −17; 21) B C(6; 21; 21) C C(20; 15; 7) D C(8;21

2 ; 19).

Câu 6 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?

A log x > log y B ln x > ln y C logax> logay D log 1

a

x> log1

a y

Câu 7 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =

x3+ 6x2+ mx − 2 đi qua điểm (11;1)?

Câu 8 Cho hình lập phương ABCD.A

B′C′D′ Tính góc giữa hai đường thẳng AC và BC′

Câu 9 Cho số phức zthỏa mãn

z

i+ 2

= 1 Biết rằng tập hợp các điểm biểu diễn số phức zlà một đường tròn (C) Tính bán kính rcủa đường tròn (C)

Câu 10 Cho hàm số y= f (x) có đồ thị của y = f′

(3 − 2x) như hình vẽ sau:

Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (

x3+ 2021x

+ m)

có ít nhất 5 điểm cực trị?

Câu 11 Cho hàm số y = f (x) xác định trên tập R và có f′

(x) = x2− 5x+ 4 Khẳng định nào sau đây đúng?

A Hàm số đã cho nghịch biến trên khoảng (1; 4).

B Hàm số đã cho nghịch biến trên khoảng (3;+∞)

Trang 2

C Hàm số đã cho đồng biến trên khoảng (1; 4).

D Hàm số đã cho đồng biến trên khoảng (−∞; 3).

Câu 12 Cho hình chóp đều S ABCD có cạnh đáy bằng a√2 và đường cao S H bằng a

√ 2

2 Tính góc giữa mặt bên (S DC) và mặt đáy

Câu 13 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là

A.→−n = (1; 3; −2) B.→−n = (1; −2; −1) C.→−n = (1; 2; 3) D.→−n = (1; −2; 3)

Câu 14 Cân phân công 3 ban tư môt tô 10 ban đê lam trưc nhât Hoi co bao nhiêu cach phân công khac

nhau

Câu 15 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y+ 5z − 2 = 0 Điểm nào dưới đây thuộc mặt phẳng (P)?

A P(4 ; −1 ; 3) B M(0 ; 0 ; 2) C Q(4 ; 4 ; 2) D N(1 ; 1 ; 7).

Câu 16 Cho hàm số y= ax+ b

cx+ d có đồ thị là đường cong trong hình vẽ bên Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

Câu 17 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A. 11

29

29

11

13.

Câu 18 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2

A |z1+ z2|= √5 B |z1+ z2|= 1 C |z1+ z2|= 5 D |z1+ z2|= √13

Câu 19 Cho số phức z= 2 + 5i Tìm số phức w = iz + z

Câu 20 Số phức z= (1+ i)2017

21008i có phần thực hơn phần ảo bao nhiêu đơn vị?

Câu 21 Cho z là một số phức Xét các mệnh đề sau :

I Nếu z= z thì z là số thực

II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z

Câu 22 Với mọi số phức z, ta có |z+ 1|2bằng

A z2+ 2z + 1 B z+ z + 1 C z · z+ z + z + 1 D |z|2+ 2|z| + 1

Câu 23 Số phức z= 1+ i

1 − i

!2016

+ 1 − i

1+ i

!2018

bằng

Câu 24 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?

Câu 25 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|= 34 B |z|= √34 C |z|=

√ 34

√ 34

Trang 3

Câu 26 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên).

Khoảng cách từ B đến mặt phẳng (S CD) bằng

√ 3

√ 3

√ 2

2 a.

Câu 27 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4+ 6x2+ mx có ba điểm cực trị?

Câu 28 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

Câu 29 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+

y2+ 24x)?

Câu 30 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 31 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn

z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là

Câu 32 Trong không gian Oxyz, cho đường thẳng d : x −1

−1 = z+ 3

−2 Điểm nào dưới đây thuộc d?

A M(2; −1; −2) B N(2; 1; 2) C Q(1; 2; −3) D P(1; 2; 3).

Câu 33 Có bao nhiêu số nguyên x thỏa mãn log3x

2− 16

343 < log7x2− 16

Câu 34 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|

Câu 35 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|

A max T = 2√5 B P= 2016 C P = −2016 D P = 1

Câu 36 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =

√ 2

2 và điểm A trong hình vẽ bên là điểm biểu diễn z

Biết rằng điểm biểu diễn số phức ω = 1

iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn

số phức ω là

Câu 37 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?

3

Câu 38 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

Câu 39 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Trang 4

Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P = (|z| − 4)2

|z|2− 42 C P= 

|z|2− 22 D P= (|z| − 2)2

Câu 41 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A |z| > 2 B. 1

2 < |z| < 3

3

2 ≤ |z| ≤ 2. D |z| <

1

2.

Câu 42 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Câu 43 Biết rằng phương trình log22x −7log2x+ 9 = 0 có 2 nghiệm x1, x2 Giá trị của x1x2bằng

Câu 44 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn

z+ 4 − 8i

= 2√5

là đường tròn có phương trình:

A (x+ 4)2+ (y − 8)2 = 20 B (x − 4)2+ (y + 8)2 = 20

C (x − 4)2+ (y + 8)2 = 2√5 D (x+ 4)2+ (y − 8)2 = 2√5

Câu 45 Tìm đạo hàm của hàm số: y= (x2+ 1)

3 2

A. 3

2(x

2+ 1)

1

4x

−1

1

2(2x)

1

2

Câu 46 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là

A (−∞; −3] ∪ [3; +∞) B (0; 3] C (−∞; 3] D [−3; 3].

Câu 47 Thể tích khối lập phương có cạnh 3a là:

Câu 48 Hàm số y = (x + m)3+ (x + n)3 − x3 đồng biến trên khoảng (−∞; +∞) Giá trị nhỏ nhất của biểu thức P= 4(m2+ n2) − m − n bằng

A. 1

−1

Câu 49 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?

A.

15

√ 3

√ 3

1

2.

Câu 50 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?

A.→−n = (−2; 3; 1) B.→−n = (2; 3; −4) C.→−n = (−2; 3; 4) D.→−n = (2; −3; 4)

Trang 5

HẾT

Ngày đăng: 05/04/2023, 11:11