Đường thẳng đi qua điểm A và vuông góc với mặt phẳng P có phương trình là:... Phương trình mặt cầu tâm I và tiếp xúc với trục Oy là: A?. Hình chiếu vuông góc của A lên các trục tọa độ
Trang 1KỲ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA NĂM 2020
Bài thi: TOÁN
Thời gian làm bài: 120 phút, không kể thời gian phát đề
ĐỀ ÔN THI SỐ 4
Câu 1 Trong không gian với hệ tọa độ Oxy cho mặt phẳng : 2x y 3z 4 Gọi A ,B ,C
lần lượt là giao điểm của mặt phẳng với các trục tọa độ Ox, Oy, Oz Thể tích tứ diện OABC bằng:
9
Câu 2 Cho hàm số y f x xác định và liên tục trên 3;3 có đồ thị
hàm số như hình vẽ bên Mệnh đề nào sau đây đúng về hàm số trên
đoạn 3;3 ?
A Hàm số f x đạt giá trị lớn nhất tại x 2
B Hàm số f x đạt giá trị nhỏ nhất tại x 1
C Hàm số f x đồng biến trên khoảng 1;3
D Hàm số f x nghịch biến trên khoảng 3;3
Câu 3 Cho cấp số cộng có u1 3, d 4 Chọn khẳng định đúng trong các khẳng định
sau?
A u5 15 B u4 8 C u3 5 D u2 2
Câu 4 Có 10 cái bút khác nhau và 8 quyển sách giáo khoa khác nhau Một bạn học sinh
cần chọn 1 cái bút và 1 quyển sách Hỏi bạn học sinh đó có bao nhiêu cách chọn?
Câu 6 Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A 1; 2 , B 2;3 , C 3; 4 Diện
tích tam giác ABC bằng:
2
Câu 7 Trong mặt phẳng tọa độ Oxy, đường thẳng đi qua điểm A1; 2 và nhận n 2; 4làm vectơ pháp tuyến có phương trình là:
Trang 2C loga b loga b D loga b
a b
Câu 9 Trong mặt phẳng tọa độ Oxy, cho đường tròn 2 2
C x y x y và hai điểm A 1;1 và B 1; 2 Khẳng định nào dưới đây là đúng?
A A nằm trong và B nằm ngoài (C) B A và B cùng nằm ngoài (C)
C A nằm ngoài và B nằm trong (C) D A và B cùng nằm trong (C)
Câu 10 Tập xác định của hàm số 1
2
y x là:
A 2; B 2 C \ 2 D
Câu 11 Bảng biến thiên dưới đây là bảng biến thiên của hàm số nào trong các hàm số
được liệt kê ở bốn đáp án A, B, C, D?
Câu 12 Trong không gian Oxyz, cho điểm A 1; 3; 2 và mặt phẳng P :x 2y 3z 4 0
Đường thẳng đi qua điểm A và vuông góc với mặt phẳng (P) có phương trình là:
Trang 3Câu 17 Trong không gian với hệ trục tọa độ Oxyz, cho điểm I1; 2;3 Phương trình mặt
cầu tâm I và tiếp xúc với trục Oy là:
A H 5 B H 3 2 C H 2 D H 5 2
Câu 20 Cho hàm số
1
ax b y
x
Với giá trị thực nào của a và b sau đây thì đồ thị hàm số
cắt trục tung tại A0; 1 và có đường tiệm cận ngang là y 1?
A a 1,b 1 B a 1,b 0 C a 1,b 1 D a 1,b 2
Câu 21 Tính tích phân
2 4 0
2 4 0
I t dt
2 4 0
I t dt
Câu 22 Cho tứ diện ABCD có độ dài các cạnh ABACADBCBDa và CDa 2
Góc giữa hai đường thẳng AD và BC bằng:
Trang 4Câu 24 Trong không gian với hệ trục tọa độ Oxyz, cho điểm A4; 3;2 Hình chiếu vuông
góc của A lên các trục tọa độ Ox, Oy, Oz theo thứ tự lần lượt là M, N, P Phương trình mặt phẳng (MNP) là:
3
x
x K
Câu 27 Cho hình chóp đều S.ABC có cạnh đáy bằng 2a Khoảng cách từ tâm O của
đường tròn ngoại tiếp đáy ABC đến một mặt bên là
log x log x có hai nghiệm là a, b Khi đó tích ab bằng:
Trang 5A 8 B 9 C 64 D 81
Câu 31 Cho hàm số f x có đạo hàm f ' x xác định, liên tục trên và có đồ thị f ' x
như hình vẽ bên Khẳng định nào sau đây là sai?
A Hàm số y f x đồng biến trên khoảng 2;
B Hàm số y f x nghịch biến trên khoảng 1;1
C Hàm số y f x đồng biến trên khoảng 2;1
D Hàm số y f x nghịch biến trên khoảng ; 2
Câu 32 Thầy Bình đặt lên bàn 30 tấm thẻ đánh số từ 1 đến 30 Bạn An chọn ngẫu nhiên
10 tấm thẻ Tính xác suất để trong 10 tấm thẻ lấy ra có 5 tấm thẻ mang số lẻ, 5 tấm mang
số chẵn trong đó chỉ có 1 tấm thẻ mang số chia hết cho 10
C Phương trình đường thẳng đi qua tâm của đường tròn ngoại tiếp tam giác ABC
và vuông góc với mặt phẳng (ABC) là:
Câu 36 Một hộp đựng 10 thẻ được đánh số từ 1 đến 10 Phải rút ra ít nhất k thẻ để xác
suất có ít nhất một thẻ ghi số chia hết cho 4 lớn hơn 13
15 Giá trị của k bằng bao nhiêu?
Trang 6Câu 37 Cho (H) là hình phẳng giới hạn bởi đường thẳng 1 1
2
y x và nửa đường elip có phương trình 1 2
4 2
y x (với 0 x 2 ) (phần tô đậm trong hình vẽ) Diện tích của (H)
Câu 38 Cắt hình trụ (T) bằng một mặt phẳng đi qua trục được thiết diện là một hình chữ
nhật có diện tích bằng 20cm2 và chu vi bằng 18cm Biết chiều dài của hình chữ nhật lớn hơn đường kính mặt đáy của hình trụ (T) Diện tích toàn phần của hình trụ là:
Câu 39 Cho phương trình 2 12 2
9x 3x 2x 1 x Phương trình trên có bao nhiêu nghiệm?
Câu 40 Cho hình lăng trụ ABC.A’B’C’ có thể tích bằng 30 Gọi I, J, K lần lượt là trung
điểm của AA’, BB’ và CC’ Thể tích của tứ diện CIJK bằng bao nhiêu?
Câu 42 Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a Hình chiếu vuông
góc của S lên mặt phẳng (ABCD) trùng với trọng tâm tam giác ABD Cạnh SD tạo với đáy (ABCD) một góc bằng 0
60 Khoảng cách từ điểm A tới mặt phẳng (SBC) là:
Trang 7Câu 44 Cho hàm số y f x có đạo hàm trên Hàm số y f ' x có đồ thị như hình vẽ bên Đặt 3 2
1 3
A, biết rằng điểm A nằm trên đường thẳng d và hoành độ điểm A nguyên
Trang 8A 247 B 248 C 229 D 290
Câu 50 Trong không gian với hệ tọa độ Oxyz, cho điểm A1;2; 3 và mặt phẳng
Q : 3x 4y 4z 5 0 cắt mặt phẳng (P) tại B Điểm M nằm trong mặt phẳng (P) sao cho
M luôn nhìn AB dưới góc vuông và độ dài MB lớn nhất Tính độ dài MB
Trang 9 Hàm số đồng biến trên khoảng 1; 2
Hàm số nghịch biến trên khoảng 3; 1 và 2;3
Hàm số đạt cực đại tại x 2 và giá trị cực đại y CD 4
Hàm số đạt cực tiểu tại x 1 và giá trị cực tiểu y CT 1
Trang 11xq xq
log 5x x log 2x 0 x xlog 5 x log 2 0 xlog 5 xlog 2 0
Các đáp án khác cơ số a 1 nên không đổi dấu bất phương trình
Câu 19 Chọn đáp án A
Trang 12z z
là đường tiệm cận ngang của đồ thị hàm số
Theo giả thiết: y 1 a 1
Đi qua điểm 0
DB CB CD a Tam giác DBC vuông tại B
Gọi M, N, I, K lần lượt là trung điểm các cạnh BD, DC, AC, AB
Trang 132 cos 1 cos 2 sin 1 0 cos 0
1 sin
2 6
5
2 6
Trang 16Hàm số y f x đồng biến trên khoảng 2; và nghịch biến trên khoảng ; 2
Đáp án B với hàm số y f x nghịch biến trên khoảng 1;1 là sai
15 3 12
n A C C C
Xác suất cần tìm là 515 31 124
10 30
Trang 171 ' m m 0,
AB
AB AC AC
n AB AC
Do dABC Vectơ chỉ phương của d là: u n 3; 1;5
Trang 18Vậy phương trình đường thẳng d đi qua I0; 2;0 là: 2
Gọi biến cố A: Lấy k tấm thẻ có ít nhất một tấm thẻ chia hết cho 4 Với 1 k 10
Suy ra A: Lấy k tấm thẻ không có tấm thẻ nào chia hết cho 4
Có 8 tấm thẻ không chia hết cho 4 nên 8
Trang 19Thiết diện qua trục là hình chữ nhật ABCD như hình vẽ
Gọi h là r là chiều cao và bán kính của hình trụ với h 2r
h r
Trang 20; ' ' '
IJK CIJK
d C IJK S V
Trang 22Xét tam giác SGC vuông tại G: 5 0 15
Trang 23Gọi H là hình chiếu vuông góc của I lên đường thẳng
AB khi đó tam giác IAH vuông cân nên
Trang 24Với điểm A 1;1 ,B 5;2 Khi đó: PMA MB
Nhận thấy, điểm A nằm trong đường tròn (C) còn điểm B nằm ngoài đường tròn (C), mà
17
MA MB AB
Vậy Pmin AB 17 khi M là giao điểm của đoạn AB với (C)
Lưu ý: Tìm tọa độ điểm M
Ta có, phương trình đường thẳng AB đi qua A 1;1 và có vectơ
Tọa độ giao điểm của đường thẳng AB và đường tròn (C) là
nghiệm của hệ với 1 y 2
17
22 59 17
sang phải 1 đơn vị
Dựa vào đồ thị ta thấy đồ thị hàm số y f x có 2 điểm cực trị
Khi tịnh tiến sang phải 1 đơn vị thì số điểm cựa trị hàm số
1
y f x vẫn là 2 điểm cực trị
Để đồ thị hàm số y f x 1 m 1 có 3 điểm cực trị thì đường
Trang 25thẳng y m 1 cắt đồ thị y f x tại 1 điểm duy nhất (Không tính điểm cực trị của đồ thị hàm y f x )
Do đó tâm mặt cầu ngoại tiếp tứ diện ABMN là trung điểm I của MN
Gọi H là trung điểm của AN
Ta có: logu1 2 log u1 2 logu10 2 logu10
logu1 2 logu10 2 logu1 2 logu10 0
Trang 26n n
MB AB MA Do đó MBmax khi và chỉ khi MAmin
Gọi E là hình chiếu của A lên (P)
Ta có: AM AE Đẳng thức xảy ra khi và chỉ khi M E
Trang 27Vậy MBBE 5