Bài 3 Hình thang cân CÂU HỎI Câu hỏi 1 trang 72 Toán 8 tập 1 Hình thang ABCD (AB // CD) trên hình 23 có gì đặc biệt ? Lời giải Hình thang ABCD trên hình 23 có hai góc kề cạnh đáy lớn bằng nhau Câu hỏi[.]
Trang 1Bài 3 Hình thang cân CÂU HỎI
Câu hỏi 1 trang 72 Toán 8 tập 1: Hình thang ABCD (AB // CD) trên hình 23 có gì đặc
biệt ?
Lời giải
Hình thang ABCD trên hình 23 có hai góc kề cạnh đáy lớn bằng nhau
Câu hỏi 2 trang 72 Toán 8 tập 1: Cho hình 24
a) Tìm các hình thang cân
b) Tính các góc còn lại của mỗi hình thang cân đó
c) Có nhận xét gì về hai góc đối của hình thang cân ?
Lời giải
Trang 2a)
+) Hình 24a) có: A C 80 100 180
Mà hai góc ở vị trí trong cùng phía nên AB//DC
Suy ra ABDC là hình thang
Hình thang ABDC có A B 80
Suy ra ABDC là hình thang cân
+) Hình 24b) tứ giác EFGH không là hình thang nên cũng không là hình thang cân +) Hình 24c) tứ giác MNIK có IKM KMN 110 70 180
Mà hai góc ở vị trí trong cùng phía nên MN // IK
Suy ra MNIK là hình thang
Ta có KIN 70 180 KIN 180 70 110
KIN IKM 110
Suy ra MNIK là hình thang cân
+) Hình 24d) tứ giác PQST có TPQ PQS 90 90 180
Mà hai góc ở vị trí trong cùng phía nên MN // IK
Suy ra MNIK là hình thang
Ta có KIN 70 180 (hai góc kề bù)
KIN 180 70 110
KIN IKM 110
Trang 3Suy ra MNIK là hình thang cân
Các hình thang cân là : ABDC, IKMN, PQST
b)
Xét hình thang cân ABCD có AB // CD
D B 100 (hai góc kề một đáy bằng nhau)
Xét hình thang cân MNIK, có IK // MN:
N M 70 (hai góc kề một đáy bằng nhau)
Xét hình thang cân PQST, có PQ // ST:
S T 90
c) Xét hình thang cân ABCD có: A C B D 100 80 180
Xét hình thang cân MNIK có: M I N K 110 70 180
Xét hình thang cân PQST có: P S Q T 90 90 180
Nhận xét: Hai góc đối của hình thang cân bù nhau
Câu hỏi 3 trang 74 Toán 8 tập 1: Cho đoạn thẳng CD và đường thẳng m song song với
CD (h.29) Hãy vẽ các điểm A, B thuộc m sao cho ABCD là hình thang có hai đường chéo CA, DB bằng nhau Sau đó hãy đo các góc C và D của hình thang ABCD đó để
dự đoán về dạng của các hình thang có đường chéo bằng nhau
Trang 4Lời giải
Muốn xác định hai điểm A, B trên m ta lần lượt quay cung tròn tâm C bán kính R cắt đường thẳng m tại A và cung tròn tâm D bán kính R cắt đường thẳng m tại B
Ta được hình thang ABCD
Sau khi tiến hàng đo, ta thấy hai góc C và D bằng nhau
Từ đó ta có dự đoán sau: Hình thang có hai đường chéo bằng nhau là hình thang cân
BÀI TẬP
Bài 11 trang 74 Toán 8 tập 1: Tính độ dài các cạnh của hình thang cân ABCD trên giấy
kẻ ô vuông (h.30, độ dài của cạnh ô vuông là 1cm)
Trang 5Lời giải
(Mỗi ô vuông là 1cm)
Ta lấy điểm E như trên hình vẽ
Quan sát vào hình vẽ ta thấy :
+ AB = 2cm
+ CD = 4cm
+ Tính AD :
Xét tam giác vuông ADE có AE = 1cm, DE = 3cm:
AD2 = AE2 + DE2 (Định lý Pytago)
AD2 = 12 + 32 = 10
AD 10 cm
Trang 6+ Tính BC :
ABCD là hình thang cân nên AD BC 10 cm
Vậy các cạnh của hình thang lần lượt là: AB = 2cm, CD = 4cm, AD BC 10 cm
Bài 12 trang 74 Toán 8 tập 1: Cho hình thang cân ABCD (AB // CD, AB < CD) Kẻ
các đường cao AE, BF của hình thang Chứng minh rằng DE = CF
Lời giải
Vì hình thang ABCD cân nên ta có: AD = BC (hai cạnh bên bằng nhau)
Và C D (hai góc kề một đáy bằng nhau)
Xét AED và BFC có:
AED BFC 90
AD = BC (cmt)
C D (cmt)
⇒ ΔAED = ΔBFC (cạnh huyền – góc nhọn)
⇒ DE = CF
Bài 13 trang 74 Toán 8 tập 1: Cho hình thang cân ABCD (AB//CD), E là giao điểm
của hai đường chéo Chứng minh rằng EA = EB, EC = ED
Trang 7Lời giải
Do ABCD là hình thang cân nên:
AD = BC (hai cạnh bên bằng nhau)
AC = BD (hai đường chéo bằng nhau) Xét ADC và BCD, ta có:
AD = BC (cmt)
AC = BD (cmt)
DC cạnh chung
⇒ ΔADC = ΔBCD (c.c.c)
C D (2 góc tương ứng)
⇒ ΔECD cân tại E
⇒ EC = ED
Ta lại có:
AC – EC = EA
BD – ED = EB
Mà AC = BD và EC = ED
AC – EC = BD – ED hay EA = EB
Trang 8Vậy EA = EB, EC = ED
Bài 14 trang 75 Toán 8 tập 1: Đố Trong các tứ giác ABCD, EFGH trên giấy kẻ ô
vuông (h.31), tứ giác nào là hình thang cân? Vì sao?
Lời giải
Ta quy ước mỗi ô vuông có cạnh 1cm
+ Xét tứ giác ABCD
Nhận thấy AB // CD ⇒ Tứ giác ABCD là hình thang
Xét ΔACK vuông tại K, có AK = 4 cm, CK = 1cm:
AC2 = AK2 + KC2 (định lý Py – ta – go)
AC2 = 42 + 12 = 17
Trang 9Xét ΔBHD vuông tại H, có BH = 4 cm, HD = 1cm:
BD2 = BH2 + HD2 (định lý Py – ta – go)
BD2 = 42 + 12 = 17
⇒ AC2 = BD2
⇒ AC = BD
Vậy hình thang ABCD có hai đường chéo AC = BD nên là hình thang cân
+ Xét tứ giác EFGH
FG // EH ⇒ Tứ giác EFGH là hình thang
Lại có : EG = 4cm
Xét ΔFIH vuông tại I, có HI = 3 cm, IF = 2cm:
FH2 = IH2 + IF2 (định lý Py – ta – go)
FH2 = 32 + 22 = 13
FH 13cm
Vậy hình thang EFGH có hai đường chéo không bằng nhau nên không phải hình thang cân
Bài 15 trang 75 Toán 8 tập 1: Cho tam giác ABC cân tại A Trên các cạnh bên AB, AC
lấy theo thứ tự các điểm D, E sao cho AD = AE
a) Chứng minh rằng BDEC là hình thang cân
b) Tính các góc của hình thang cân đó, biết rằng góc A 50
Trang 10Lời giải
Xét tam giác ABC cân tại A có: B C 180 A
2 (1)
Xét tam giác ADE có AD = AE nên tam giác ADE cân tại A
Từ (1) và (2) suy ra: ADE B
Mà hai góc ở vị trí đồng vị nên DE // BC
DECB là hình thang
Mà B C là hai góc ở đáy
DECB là hình thang cân
b) Ta có: A 50 B C 180 A 180 50 130 65
Vì DECB là hình thang cân có DE // BC
BDE B 180 (hai góc trong cùng phía bù nhau)
BDE 180 65 115
Vì DECB là hình thang cân CED BDE 115 (hai góc kề một đáy bằng nhau)
Trang 11Vậy các góc của hình thang cân là: CED BDE 115 và B C 65
Luyện tập Bài 16 trang 75 Toán 8 tập 1: Cho tam giác ABC cân tại A, các đường phân giác BD,
CE (D ∈ AC, E ∈ AB) Chứng minh rằng BEDC là hình thang cân có đáy nhỏ bằng cạnh bên
Lời giải
- Chứng minh tứ giác BCDE là hình thang cân:
Xét ΔABC cân tại A ABC ACB (hai góc ở đáy bằng nhau)
Ta có: B1 B2 ABC
2 (BD là phân giác ABC )
Ta có: C1 C2 ACB
2 (CE là phân giác ACB )
Mà ABC ACB(cmt)
+ Xét ΔAEC và ΔADB có:
Achung
Trang 12AB = AC (gt)
B C (Cmt)
⇒ ΔAEC = ΔADB (g – c – g)
⇒ AE = AD (hai cạnh tương ứng)
Suy ra tam giác ADE cân tại A
Xét tam giác ABC cân tại A có: B C 180 A
2 (1)
Xét tam giác ADE có AD = AE nên tam giác ADE cân tại A
Từ (1) và (2) suy ra: ADE B
Mà hai góc ở vị trí đồng vị nên DE // BC
DECB là hình thang
Mà B C là hai góc ở đáy
DECB là hình thang cân
- Chứng minh ED = EB
Vì ED // BC
D B (Hai góc so le trong)
Mà B1 B2
⇒ ΔEDB cân tại E ⇒ ED = EB
Trang 13Vậy ta có EBCD là hình thang cân có đáy nhỏ bằng cạnh bên
Bài 17 trang 75 Toán 8 tập 1: Hình thang ABCD (AB // CD) có ACD BDC Chứng
minh rằng ABCD là hình thang cân
Lời giải
Gọi E là giao điểm của AC và BD
Ta có: ACD BDC
⇒ ΔEDC cân tại E ⇒ ED = EC (1)
Vì ABCD là hình thang có AB//CD:
A C và B1 D1 (Các cặp góc so le trong)
Mà C1 D1 A1 B1
⇒ ΔEAB cân tại E ⇒ EA = EB (2)
Từ (1) và (2) suy ra: EA + EC = EB + ED hay AC = BD
Vậy hình thang ABCD có hai đường chéo AC = BD nên là hình thang cân
Bài 18 trang 75 Toán 8 tập 1: Chứng minh định lý: "Hình thang có hai đường chéo
bằng nhau là hình thang cân" qua bài toán sau: Cho hình thang ABCD (AB // CD) có
AC = BD Qua B kẻ đường thẳng song song với AC, cắt đường thẳng DC tại tại E Chứng minh rằng:
Trang 14a) ΔBDE là tam giác cân
b) ΔACD = ΔBDC
c) Hình thang ABCD là hình thang cân
Lời giải
a)
Vì AB // CE ABC DCE (hai góc so le trong)
Vì BE // AC ACB CBE (hai góc so le trong) Xét ABC và ECB, có:
ABC DCE (cmt)
BC chung
ACB CBE (cmt)
ABC ECB(g c g)
AC = BE (hai cạnh tương ứng)
Mà AC = BD nên BD = BE
Do đó tam giác BDE cân tại B
b) Vì AC // BE nên E C1(hai góc đồng vị)
Trang 15Tam giác BDE cân tại B D1 E(hai góc ở đáy)
Xét ADC và BCD, có:
AC = BD (gt)
C D (cmt)
CD chung
ADC BCD (hai góc tương ứng)
Vậy hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân
Bài 19 trang 75 Toán 8 tập 1: Đố Cho ba điểm A, D, K trên giấy kẻ ô vuông (h.32)
Hãy tìm điểm thứ tư M giao điểm của các dòng kẻ sao cho nó cùng với ba diểm đã cho
là bốn đỉnh của một hình thang cân
Lời giải
Ta có thể xác định hai điểm M thỏa mãn như dưới hình