alpha plus beta is gamma, alpha plus beta equals gamma, alpha plus beta is equal to gamma, alpha plus beta makes gamma 38.. alpha is equal to the ratio of beta to gamma.. beta divided by
Trang 1Nguyễn Hữu Điển
MẪU CÂU TOÁN HỌC
ANH - VIỆT
Bản 1.0
Trang 251
Trang 3Lời nói đầu
Đây là bản nháp các thuật ngữ toán học Mục đích khởi đầu cho các bạn mới viết bài cho các báo Tập sách gồm các phần
1 Phần các thuật ngữ
2 Phần một số chú ý ngữ pháp
3 Một số các đọc ký hiệu và công thức
4 Các ký hiệu toán chuẩn soạn bằng LaTeX
5 Những ý kiến hay về viết báo tiếng anh và cách trình bầy chúng
Đây chỉ là bản nháp, còn rất nhiều nội dung chưa đưa vào đây và cũng chưa được chọn lọc, mong các bạn cho ý kiến
Trang 4Mục lục
Lời nói đầu 3
Mục lục 4
Chương 9 Một số quy tắc đọc ký hiệu 5 9.1 Các ký hiệu công thức chung 5
9.2 Ký hiệu chuyên ngành 8
9.2.1 Logic 8
9.2.2 Set 8
9.2.3 Order 9
9.2.4 Algebra 9
9.2.5 Topology 9
9.2.6 Function 10
9.2.7 Probability 10
Trang 5Chương 9
Một số quy tắc đọc ký hiệu
9.1 Các ký hiệu công thức chung
1 + 1 plus
4 × 4 multiplication sign (sign of multiplication)
5 : 5 division sign (sign of division)
10 ' 10 congruent to , is isomorphic to
11 α = β 11 alpha equals beta, alpha is equal to beta
12 α6= β 12 alpha is not beta, alpha is not equal to beta
13 α≈ β 13 alpha approximately equals beta
14 α± β 14 alpha plus or minus beta
15 α > β 15 alpha is greater than beta
16 α β 16 alpha is substantially greater than beta
17 α < β 17 alpha is less than beta
18 α β 18 alpha is substantially less than beta
19 α2> αn 19. alpha second is greater than alpha n-th
20 x−→ ∞ 20 x lends to infinity
21 x =∞ 21 x approaches infinity
24 α00 24 alpha double prime, alpha second prime
25 α0000 25 alpha triple prime
26 α 26 alpha vector, the mean value of alpha
Trang 69.1 Các ký hiệu công thức chung 6
30 α1 30 alpha first, alpha sub one, alpha suffix one
31 αn 31. alpha n-th, alpha sub n, alpha suffix n
32 f0
c 32. f prime sub c, f prime suffix c, f suffix c prime
33 α00
2 33 alpha second double prime, alpha double prime second
36 1000 36 ten seconds (ten inches)
37 α + β = γ 37 alpha plus beta is gamma, alpha plus beta equals gamma,
alpha plus beta is equal to gamma, alpha plus beta makes gamma
38 (α + β)2 38 alpha plus beta all squared
39 α− β = γ 39 alpha minus beta is gamma; alpha minus beta leaves
gamma
40 (2x− y) 40 bracket two x minus y close the brackets
41 2× 2 = 4 41 twice two in four
42 5× 5 = 25 42 five times five is twenty five, five multiplied by five equals
twenty five
43 S = v ˙t 43 S is equal to v multiplied by t; S equals v times t
44 α = β
γ 44. alpha is equal to the ratio of beta to gamma
45 β
γ = α 45. beta divided by gamma is alpha; beta by gamma equals
alpha
46 αβ2
β = αβ 46. alpha beta square (divided) by beta equals alpha beta
47 α
∞ = 0 47. alpha by infinity is equal to zero.
48 α
∞ = 0 48. alpha by infinity is equal to zero.
49 x±px2
− y2
y 49. x plus or minus square root of x square minus y square all
over y
50 α
β =
a
b 50. the ratio of alpha to beta equals the ratio of a to b; alpha to
beta is as a to b
51 1
52 1
53 1
54 3
55 21
56 0.5 56 o [ou] point five; zero point five; nought point five
57 0.002 57 o [ou] point o [ou] o [ou] two; zero point zero zero two
59 0.0000001 59 o [ou] point six noughts one
Trang 79.1 Các ký hiệu công thức chung 7
61 15.505 61 fifteen point five o [ou] five
62 x2 62 x square; x squared; the square of x; the second power of
x; x to the second power; x raised to the second power
63 x3 63 x cube; x cubed; x raised to the third power
64 xn 64. x to the n-th power;
65 x−n 65. x to the minus n-th power
66 √α 66. the square root of alpha.
67 √3α = β 67. the cube root of alpha is beta.
68 √5
α2 68 the fifth root of alpha square
69 α =√
R2+ X2 69 alpha equals to the square root of (capital) R square plus x
square
70 r α1+ A
2xb00 70 the square root of alpha first plus capital A divided to xb
double prime
71 df
dx 71. df over dx; the first derivative of f with respect to x
72 d2f
dx2 72 the second derivative of f with respect to x d two f over d x
square
73 dnf
dxn 73. the n-th derivative of f with respect to x
74 ∂2
f
∂x2 +∂
2
f
∂y2 = 0 74 partial d two f over partial d x square plus partial d two f
over partial d y square equals zero
75 y = f (x) 75 y is a function of x
76 Rβ
α 76. the intergral from alpha to beta; integral between limits
alpha and beta
77 d
dx
Rx
x 0F dx 77 d over dx of the integral from x0to x of capital F dx
78 E =P 1
αβ 78. capital E is equal to the ratio of the product P1 to the
prod-uct alpha beta
79 α m
n
= √n
αm 79. alpha to the m by n-th power equals the n-th root of alpha
to the m-th power
80 R dx
pc2
− y2
80 the integral of dx divided by the square root of c square minus y square
81 α + β
α− β =
c + d
c− d 81. alpha plus beta over alpha minus beta is equal to c plus dover c minus d.
82 V =
upsin2α− cos2α
82 V equals u square root of sin square alpha minus cosine square alpha
83 tan α = tan β
l 83. tangent alpha equals tangent beta divided by l
84 α3= log d 84 alpha cubed is equal to the logarithm of d to the base c
Trang 89.2 Ký hiệu chuyên ngành 8
86 (D− r1)[(D− r2)y] 86 open round brackets capital D minus r first close the round
brackets open square and round brackets capital D minus r second close the round bracket by y close the square brack-ets
87 fv =
mω2
α2
[rp2m2+ R2(R1+ω
2α2
rp )]
87 f sub v is equal to m omega square alpha square divided by square brackets, r, p square m square plus capital R second round brackets opened capital R first plus omega square al-pha square divided by rp round and square brackets closed
88 |fj(t1)− fj(t2)| 88 the absolute value of the quantity f sub j of t one minus f
sub j of t two
89 max
j=1,n
Pn
i=1aij(t) 89 maximum over j of the sum from i equals one to i equaqls
n of the modulus of aij of (t), where j runs from one to n
9.2 Ký hiệu chuyên ngành
9.2.1 Logic
90 ∀xF (x) 90 for all x F(x) holds
91 ∃xF (x) 91 there exists an x such that F(x) holds
92 A∧ B 92 A and B (Conjunction)
93 A∨ B 93 A or B (Disjunction)
95 A =⇒ B 95 A implies B (Implication)
96 A⇐⇒ B 96 A and B are logically equivalent (Equivalence)
9.2.2 Set
97 x∈ X 97 element x is a member of the set X (element x belongs to
the set X)
98 A⊂ B 98 A is a subset of B
99 A6⊆ B 99 A is a proper subset of B
101.A∪ B 101.Union of sets A and B
102.A∩ B 102.Intersection of sets A and B
103.Ac 103.Complement of the set A
104.A/R 104.Set of equivalence classes of A with respect to an
equiva-lence relation R
105.A× B 105.Cartesian product of A and B
106.Q
λ
Aλ 106.Cartesian product of the A sub lambda
107.{x|p(x)} 107.Set of all element x with the property p(x)
108.{Aλ}λ∈Λ 108.Family with index set Lambda
109.f : X→ Y 109.mapping f from X to Y
110.f|A 110.restriction of a mapping f to A
Trang 99.2 Ký hiệu chuyên ngành 9
111.g◦ f 111.Composite of mapping f and g
112.lim sup An 112.Supperior limit of the sequence of sets A sub n
113.lim inf An 113.Inferior limit of the sequence of sets A sub n
114.lim
−→Aλ 114.Inductive limit of A sub lambda
115.lim
←−Aλ 115.Projective limit of A sub lambda
9.2.3 Order
116.(a, b) 116.open interval
117.[a, b] 117.closed interval
118.(a, b], [a, b) 118.half-open- interval
9.2.4 Algebra
123.a≡ b (mod n) 123.a and b are congruent modulo n
125.det A 125.Determinant of a square matrix A
126.trA 126.Trace of a square matrix A
127.AT 127.Transpose of a matrix A
128.In 128.Unit matrix of degree n
129.A⊗ B 129.Kronecker product of two matrix A and B
130.M ∼= N 130.Two algebraic systems M and N are isomorphic
131.M/N 131.Quotiont space of an algebraic system M by N
132.dim M 132.Dimension of a linear space M
134.ker f 134.Kernel of a mapping f
135.Coim f 135.Coimage of a mapping f
136.Coker f 136.Cokernel of a mapping f
137.(¯a, ¯b) 137.inner product of two vectors ¯a and ¯b
138.M⊗ N 138.tensor product of two modules M and N
139.hom(M, N ) 139.Set of all homomorphisms from M to N
140.ΛM 140.Exterior algebra of a linear space M
9.2.5 Topology
141.a → a 141.sequence a sub n converges to a
Trang 109.2 Ký hiệu chuyên ngành 10
143.lim an 143.limit of a sequence a sub n
144.lim sup an 144.superior limit of a sequence a sub n
145.lim inf an 145.inferior limit of a sequence a sub n
146.E, clE¯ 146.Closure of a set E
147.E◦, int E 147.Interior of a act E
148.d(x, y) 148.distance between two point x and y
9.2.6 Function
151.grad ϕ 151.gradient of a function varphi
152.∆ϕ 152.Laplacian of a function varphi
153.D(u1, u2, , un)
D(x1, x2, , xn) 153.Jacobian determinat of (u1, u2, , un) with respect to
(x1, x2, , xn)
154.|z| 154.absolute value of z
155.Re z 155.real part of a complex number z
156.Im z 156.Imaginary part of a complex number z
157.arg z 157.Argument of a complex number z
158.D(T ) 158.Domain of an operator T
159.R(T ) 159.Range of an operator T
160.Supp T 160.Support of a function f
9.2.7 Probability
161.P (E) 161.Probability of an event E
162.E(X) 162.Mean (expectation) of a random variable X
163.V (X)δ2
(X) 163.Variance of a random variable X
164.ρ(X, Y ) 164.Correlation coefficient of two random variables X and Y
165.E(X|Y ) 165.Conditional expectation of random variable X under the
condition Y