1. Trang chủ
  2. » Tất cả

ĐỀ CƯƠNG ÔN TẬP TOÁN 9 2019 - 2020

5 5 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 207,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Gợi ý: Dựa vào dấu hiệu nhận biết của hình bình hành và tiên đề Ơclit để chứng minh 3 điểm thẳng hàng.. Gợi ý: Dựa vào dấu hiệu nhận biết của hình thoi và tiên đề Ơclit để chứng minh 3 đ

Trang 1

PHÒNG GD&ĐT CAM LÂM

TRƯỜNG THCS A.YERSIN ĐỀ CƯƠNG ÔN TẬP

MÔN: TOÁN 9

NĂM HỌC 2019 – 2020

I Lý thuyết:

A.TOÁN ĐẠI SỐ

1 Phát biểu định nghĩa căn bậc hai của một số

a0

2 Acó nghĩa khi nào?

3 Các công thức nhân, chia, biến đổi đơn giản

căn bậc hai

4 Hàm số bậc nhất, vẽ đồ thị, vị trí tương đối

giữa hai đường thẳng

5 Tính góc giữa đường thẳng và trục Ox

6 Giải hệ phương trình bằng phương pháp

thế; cộng

B TOÁN HÌNH HỌC

1 Hệ thức giữa cạnh và đường cao trong tam giác vuông

2 Hệ thức giữa cạnh và góc trong tam giác vuông

3 Đường tròn:

+ Đường kính và dây

+ Dây và khoảng cách từ tâm đến dây

+ Tiếp tuyến của đường tròn

+ Vị trí tương đối của hai đường tròn

+ Góc ở tâm

+ Liên hệ giữa cung và dây

II Bài tập:

Các dạng bài tập:

1 Bài tập về căn bậc hai

2 Bài tập về hàm số bậc nhất

3 Bài tập về hình học

BÀI TẬP ĐẠI SỐ

DẠNG 1: BÀI TẬP VỀ CĂN BẬC HAI

Bài 1: Tìm x để biểu thức sau có nghĩa :

a/ 2 x 1 b/

x

 2

1 c/

1

3

2

x d/ 2x23 e/

2

5

2 

x

Bài 2: Tính (Rút gọn ):

a/

144

25 150

6 23

2300   b/ (2 3 5) 3 60 c/ 5 2 6  42 3

d/ (2- 2).(5 2) (3 2 5)2 e/ a2( a 1)2 với a >0 f/ 6 6

6 4

128

16

b a

b a

(Vớia<0 ; b 0)

5

2 2

5 , 13 75

a a a

b a

b a b a

b a

Với a0;b0,ab

Bài 3: Giải phương trình:

a/ 3+2 x 5 b/ x2 10x25 x3 c/ x 5 5 x 1

4

2 4

2

2

x

Trang 2

f/ 1

2

3 6 9

1 2

15 25

9

5 2

20 4

3

h/ (5 x 2)( x 1)5x4 (ĐK: x0)

Bài 4: Chứng minh :

a/ 9 4 5  5 2

xy

y x x y

y

x

(

Với x>0; y>0 c/ x+ 2 2x 4 ( 2 x 2)2 Với x2

Bài 5: Cho biểu thức:

A =

x

x x

x   2 21

1 2

2

1

a/ Tìm TXĐ rồi rút gọn biểu thức A

b/ Tính giá trị của A với x =3

c/ Tìm giá trị của x để

2

1

A

Bài 6: Cho biểu thức : P =

x

x x

x x

x

4

5 2 2

2 2 1

a/ Tìm TXĐ rồi Rút gọn

b/ Tìm x để P = 2

c/ Tính giá trị của P khi x = 3-2 2

Bài 7: Tính

Bài 8:

a/ Chứng minh: x2 +x 31(x+

4

1 ) 2

3 2

 b/ Tìm giá trị nhỏ nhất của biểu thức sau: A= x2 +x 3 1

Bài 9: So sánh

a/ 15 và 3 2744 b/

-2

1

và -3

9 1

DẠNG 2: BÀI TẬP VỀ HÀM SỐ BẬC NHẤT

Bài 1: Cho hai hàm số y = 3x +7 và y = x +3

a/ Hãy vẽ đồ thị của hai hàm số trên cùng một trục toạ độ

b/ Tìm toạ độ giao điểm của hai đồ thị trên ?

Bài 2: Cho hàm số: y = ax +b

a/ Xác định hàm số biết đồ thị hàm số trên song song với đường thẳng y = -2x +3

và đi qua điểm A(-3;2)

b/ Gọi M; N là giao điểm của đồ thị trên với trục tung và trục hoành; Tính độ dài MN ?

c/ Tính độ lớn của góc tạo bởi đồ thị trên với trục 0x ?

Bài 3: Cho hai hàm số bậc nhất y = 2x + 3k và y= (2m +1)x +2k-3

Tìm điều kiện của m và k để đồ thị 2 hàm số là:

Trang 3

a/ Hai đường thẳng cắt nhau

b/ Hai đường thẳng song song

c/ Hai đường thẳng trùng nhau

Bài 4: Cho các đường thẳng:

(d1): y = (m2-1) x + m2 -5 (Với m 1; m -1 )

(d2): y = x +1

(d3): y = -x +3

a/ C/m rằng khi m thay đổi thì d1 luôn đi qua 1điểm cố định

b/ C/m rằng khi d1 //d3 thì d1 vuông góc d2

c/ Xác định m để 3 đường thẳng d1; d2; d3 đồng qui

Bài 5: Cho hàm số: y = (m+6) x -7 (1)

a/ Tìm m để hàm số trên đồng biến ?

b/ Tìm m để hàm số trên nghịch biến ?

c/ Xác định hàm số biết đồ thị của nó đi qua điểm A (-3; 5); Từ đó vẽ đồ thị hàm số và xác định

độ lớn của góc tạo bởi đồ thị với trục Ox?

d/ Tìm toạ độ giao điểm của đồ thị trên với đường thẳng y = 3x - 5?

Bài 6: Cho hai hàm số y = 12x +5 -m và y = 3x +3+m

a/ Xác định vị trí của tương đối của hai đường thẳng

b/ Với giá trị nào của m thì 2 đường thẳng đó cắt nhau tại một điểm trên trục tung? Xác định giao điểm đó?

c/ m = ? Thì 2 đường thẳng đó cắt nhau tại 1 điểm trên trục hoành; xác định giao điểm đó?

Bài 7: Cho các đường thẳng:

(d1): y = (m2-1) x + m2 -5 (Với m 1; m -1 )

(d2): y = x +1

(d3): y = -x +3

a/ C/m rằng khi m thay đổi thì d1 luôn đi qua 1điểm cố định

b/ C/m rằng khi d1 //d3 thì d1 vuông góc d2

c/ Xác định m để 3 đường thẳng d1; d2; d3 đồng qui

BÀI TẬP HÌNH HỌC

Bài 1: Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền BC thành hai đoạn BH,

CH có độ dài lần lượt 4cm, 9cm Gọi D, E lần lượt là hình chiếu của H trên AB và AC

a/ Tính độ dài AB, AC

b/ Tính độ dài DE, số đo góc B, góc C

Bài 2: Cho tam giác ABC nội tiếp (O;R) Gọi H là trực tâm và vẽ đường kính AD gọi I là trung

điểm của BC

a/ C/mR: BHCD là hình bình hành

b/ C/mR: H, I, D thẳng hàng

c/ C/mR: AH=2OI

Gợi ý: Dựa vào dấu hiệu nhận biết của hình bình hành và tiên đề Ơclit để chứng minh 3 điểm

thẳng hàng

Bài 3: Cho A nằm ngoài (O;R) vẽ các tiếp tuyến AB, AC với (O) Gọi H là trực tâm của Tam

giác ABC

a/ C/mR: A, H, O thẳng hàng? b/ C/mR: OBHC là hình thoi?

Trang 4

c/ C/mR: R22 OK

ABAK (Với K là giao điểm của OA với BC)

Gợi ý: Dựa vào dấu hiệu nhận biết của hình thoi và tiên đề Ơclit để chứng minh 3 điểm thẳng hàng, tỉ số của 2 tam giác đồng dạng

Bài 4: Cho A nằm ngoài (O;R) vẽ hai tiếp tuyến AB, AC với (O) Vẽ đường kính CD của (O)

vẽ đường trung trực của CD cắt DB tại E

a/ Cm: AE = R

b/ Cm: 5 điểm A, E, B, O, C cùng thuộc một đường tròn đường kính OA

Gợi ý: C/m tam giác đều để có AE= R và c/m 5 điểm cách đều 1 điểm cố định

Bài 5: Cho (O;R) đường kính AB Vẽ các tiếp tuyến Ax và By nằm về cùng một nửa mặt

phẳng Từ E thuộc (O) ta vẽ tiếp tuyến với đường tròn cắt Ax, By lần lượt tại C và D

a/ Cm: AC+BD = CD; Góc COD =1v; R2 = AC.BD

b/ BC và AD cắt nhau tại M CmR: ME//AC//BD

c/Xác định vị trí của E trên (O) để chu vi hình thang ABDC có giá trị nhỏ nhất

Gợi ý: Dựa vào t/c 2 tiếp tuyến cắt nhau, hệ thức lượng trong tam giác vuông và t/c 2 đường phân giác của 2 góc kề bù

Bài 6: Cho nửa (O;R) đường kính CD Từ E thuộc (O) (Với E khác D và OE không vuông góc

với CD Ta vẽ tiếp tuyến với đường tròn cắt đường thẳng CD tại M Vẽ phân giác của góc EMC cắt OE tại O’ Vẽ đường tròn tâm O’ bán kính O’E

a/ Cm: CD là tiếp tuyến của (O’)

b/ CE và DE cắt (O’) lần lượt tại E,F C/m E, O’, F thẳng hàng

Gợi ý: Dựa vào dấu hiệu nhận biết tiếp tuyến và tiên đề Ơclit để chứng minh 3 điểm thẳng hàng

Bài 7: Cho đường tròn tâm O đường kính AC.trên đoạn OA lấy một điểm B và vẽ đường tròn

tâm O’ đường kính BC Gọi Mlà trung điểm của đoạn AB Từ M vẽ một dây cung vuông góc với AB cắt đương tròn tâm O tại D và E DC cắt Đường tròn tâm O ‘ tại I

a/ Tứ giác ADBE là hình gì ?Tại sao?

b/ Chứng minh I ,B,E thẳng hàng và MI2 = AM MC

c/ Chứng minh MI là tiếp`tuyến của đường toàn (O’)

Gợi ý: Dựa vào dấu hiệu nhận biết của hình thoi và tiên đề Ơclit để chứng minh 3 điểm thẳng hàng, dựa vào dấu hiệu nhận biết tiếp tuyến

Bài 8: Cho tam giác ABC vuông tại ABC = 5,AB = 2AC

a/ Tính AC

b/ Từ A vẽ đường cao AH, trên AH lây một điểm I sao cho AI = 1

3AH Từ C vẽ Cx // AH Gọi giao điểm của BI với Cx là D Tính diện tích tứ giác AHCD

c/ Vẽ hai đường tròn (B; AB) và (C; CA)Gọi giao điểm khác A của hai đường tròn này là

E Chứng minh CE là tiếp tuyến của đường tròn (B)

Gợi ý: Dựa vào dấu hiệu nhận biết tiếp tuyến và các hệ thức lượng trong tam giác vuông.

Hết

Người ra đề cương Tổ trưởng chuyên môn Duyệt của lãnh đạo

Trang 5

Nguyễn Thành Long Đỗ Bá Huy Lương Đông

Ngày đăng: 17/04/2022, 11:57

TỪ KHÓA LIÊN QUAN

w