1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Kinh tế lượng: Thông số eviews + công thức CB

2 14 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 844,08 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Lê Vũ Thảo Phương- 0337955553 Kinh tế lượng 1 CÁC THÔNG SỐ TRONG BẢNG EVIEWS Dependent variable Y Biến phụ thuộc Method: Least Squares Phương pháp: Bình phương nhỏ nhất Included obser

Trang 1

Lê Vũ Thảo Phương- 0337955553 Kinh tế lượng

1

CÁC THÔNG SỐ TRONG BẢNG EVIEWS

Dependent variable Y Biến phụ thuộc

Method: Least Squares Phương pháp: Bình phương nhỏ nhất

Included observations n Số quan sát / Kích thước mẫu

Variable

C

X

Các biến độc lập Biến hằng số Biến độc lập

j

 Hệ số hồi quy ước lượng

j

Se  Sai số chuẩn của hệ số hồi quy ước lượng t-Statistic: t qs T quan sát

Adjusted R-squared 2

R Hệ số xác định hiệu chỉnh S.E of regression ˆ Sai số chuẩn của mô hình hồi quy

Sum squared resid RSS Tổng bình phương phần dư

Durbin-Watson stat d qs d-quan sát / Thống kê D-W

Mean dependent var 𝒀̅ Trung bình biến phụ thuộc

S.D dependent var SD(Y) Độ lệch chuẩn của biến phụ thuộc

F-statistic F qs F quan sát ( KĐ sự phù hợp của MH ) Obs*R-squared 𝝌𝒒𝒔𝟐 Khi bình phương quan sát

Prob

Mức xác suất P-value của cặp giả thuyết Chú ý:

+ Prob >= α  Chấp nhận H0 (Không

đủ cơ sở bác bỏ H0) + Prob < α  Chấp nhân H1 (Bác bỏ

H0)

Prob(F-statistic)

Mức xác suất (P-value) của cặp giả thuyết

KĐ sự phù hợp của hàm hồi quy:

H0: R2 = 0 (Hàm hồi quy không phù hợp)

H1: R2 > 0 (Hàm hồi quy là phù hợp) + Prob >= α  Chấp nhận H0 (Không đủ

cơ sở bác bỏ H0) + Prob < α  Chấp nhân H1 (Bác bỏ

H0)

Trang 2

Lê Vũ Thảo Phương- 0337955553 Kinh tế lượng

2

CÁC CÔNG THỨC CƠ BẢN

1 𝛽̂ = Se (𝛽𝑗 ̂ ) * 𝑡𝑗 𝑞𝑠𝑗

2 TSS = ESS + RSS

Trong đó : TSS = (n – 1) SD2(Y)

RSS = ( n – k) ˆ2

( k : là số các biến độc lập của mô hình / Có bao nhiêu β thì có bấy nhiêu k )

3 R2 = ESS

TSS = TSS−RSSTSS = 1 - RSSTSS = 1 - (n−k) ˆ

2

(n−1).SD 2 (Y)

= 1 – ( 1- R̅̅̅ ) 2 (n−k)

(n−1)

 ˆ

2

SD2(Y) = 1- R̅̅̅ 2

4 R̅̅̅ = 1 – ( 1 – R2 2 ) (n−1)

(n−k) = 1 - ˆ

2

SD 2 (Y)

5 Fqs = R

2 / (k−1) (1− R2)/ (n−k) ( Dùng cho MHHQ bội – Có 3 β trở lên ) = 𝑡𝑞𝑠22 = [ 𝛽̂2

𝑆𝑒(𝛽̂2) ]2 ( k=2 , dùng cho MHHQ đơn – Có 2 β )

Ngày đăng: 10/02/2022, 08:01

w