Power Conversion Circuits PCCPower efficiency of converter important, so use lots of devices: MOSFET switches, clock circuits, inductors, capacitors, op amps, diodes PCC 110V 60Hz + – 5V
Trang 16.002 Fall 2000 Lecture 24 1
6.002 CIRCUITS AND
ELECTRONICS
Power Conversion Circuits
and Diodes
Trang 2Power Conversion Circuits (PCC)
Power efficiency of converter important,
so use lots of devices:
MOSFET switches, clock circuits,
inductors, capacitors, op amps, diodes
PCC
110V
60Hz
+ – 5V DC
solar cells,
DC-to-DC UP converter
R
Trang 36.002 Fall 2000 Lecture 24 3
First, let’s look at the diode
Can use this exponential model with
analysis methods learned earlier
analytical graphical incremental
(Our fake expodweeb was modeled after this device!)
D
v
D
i
D
v
D
i
S
I
D
v
+ –
D
i
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
= I e 1
D
V v
S D
A 10
IS = −12
V 025
0
VT =
q
T
k
VT = Boltzmann’s constanttemperature in Kelvins
charge of an electron
Trang 4Another analysis method:
piecewise–linear analysis
P–L diode models:
D
v
D
i
0
Ideal diode model
Æ i D = 0
“open”
or off
v D < 0
Æ v D = 0
“short”
or on
i D ≥ 0
Trang 56.002 Fall 2000 Lecture 24 5
D
v
D
i
V 6 0
0
vD =
0
iD =
“Practical” diode model
ideal with offset
V 6 0
+ –
Another analysis method:
piecewise–linear analysis
Open segment
Short segment
Trang 6Another analysis method:
piecewise–linear analysis
Replace nonlinear characteristic with
linear segments.
Perform linear analysis within each
segment.
Piecewise–linear analysis method
Trang 76.002 Fall 2000 Lecture 24 7
(We will build up towards an AC-to-DC converter)
R vO
+
–
+ –
I
v
V 6
0
+ –
Example
Consider
v I is a sine wave
Trang 8vO =
0
i D =
“Open segment”:
R
+ – vI
+
–
+ –
V 6
0 6
.
0
v I <
R vO
+
–
+ –
I
v
(v 0 6)/ R
i D = I −
6 0 v
vO = I −
“Short segment”:
R
+ –
+
–
+ –
V 6 0
6
.
0
v I ≥ vI
Example
V 6
0
circuit
Trang 96.002 Fall 2000 Lecture 24 9
Example
t
6
.
0
I
v
O
v
Trang 10Now consider — a half-wave rectifier
I
O
v
+ –
+ –
V 6
0
+–
C
Trang 116.002 Fall 2000 Lecture 24 11
A half-wave rectifier
t
diode on diode off
C
current pulses charging capacitor
MIT’s supply shows
“snipping” at the peaks
(because current drawn
at the peaks)
I
v
O
v
Demo
Trang 12DC-to-DC UP Converter
The circuit has 3 states:
I S is on, diode is off
i increases linearly
II S turns off, diode turns on
C charges up, v O increases
III S is off, diode turns off
C holds v (discharges into load)
t
S
v
S
closed S
open
T
p
T
O
v
+
–
+ –
DCI
V
C
S
i
switch
S
Do not use resistive elements!
Trang 136.002 Fall 2000 Lecture 24 13
More detailed analysis
I Assume i(0) = 0, vO(0) > 0
S on at t = 0, diode off
+ –
I
i
L
O
v
t
i
L
T
V
T
i ( ) = I
T
dt
di L
VI =
i is a ramp
L
VI
= slope
2
) T (
Li 2
1 : T t
at stored energy
Δ
L
T
V
E I
2
2
2
= Δ
Trang 14II S turns off at t = T
diode turns on (ignore diode voltage drop)
+ –
I
L
O
v
S
i
Diode turns off at T′ when i tries to go negative.
t
i
T 0
L
T
VI
LC
O
1
=
ω
T ′ TP
State III starts here
Trang 156.002 Fall 2000 Lecture 24 15
II S turns off at t = T, diode turns on
Diode turns off at T′ when I tries to go negative.
LC
O
1
=
ω
ignore
diode
drop vO(T )
O
v
T
0
Capacitor voltage
P
T
O
v
Δ
t
i
T 0
L
T
VI
T ′ TP
LC
O
1
=
ω
III.
Let’s look at the voltage profile
Trang 16II S turns off at t = T, diode turns on
LC
O
1
=
ω
ignore
diode
drop vO(T )
O
v
T
0
Capacitor voltage
P
T
O
v
Δ
t
i
T 0
L
T
VI
T ′ TP
LC
O
1
=
ω
III.
Let’s look at the voltage profile
Trang 176.002 Fall 2000 Lecture 24 17
III S is off, diode turns off
C holds v O after T′
i is zero
+ –
I
+
–
Eg, no load
O
v
0
Capacitor voltage
P
T
Trang 18III S is off, diode turns off
C holds v O after T′
i is zero
until S turns ON at T P, and cycle repeats
I II III I II III …
Thus, v O increases each cycle, if there is no load
O
v
)
(n
vO
+ –
I
+
–
Eg, no load
Trang 196.002 Fall 2000 Lecture 24 19
What is vO after n cycles Æ vO(n) ?
Use energy argument … (KVL tedious!)
Each cycle deposits ∆E in capacitor.
2
) T t
( i
L 2
1
E = = Δ
2 I
L
T
V L 2
1
⎟
⎠
⎞
⎜
⎝
⎛
=
L
T
V 2
1 E
2
2 I
= Δ
After n cycles, energy on capacitor
L 2
T
nV E
n
2
2 I
= Δ
This energy must equal 2
O( n )
Cv 2 1
or
LC
T
nV )
n ( v
2
2 I
LC
1
O =
ω
n T
V )
n (
so,
L 2
T
nV )
n (
Cv 2
1 2 I 2 2
Trang 20How to maintain vO at a given value?
recall
L
T
V
E I
2
2
2
= Δ
Another example of negative feedback:
↓
↑
−
T v
v
T v
vO ref
then if
then if
O
v
+
–
+
–
I
control
change T
T
p
T
pwm
+ vref
compare –
O
v