1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu Circuits & Electronics P24 pptx

20 251 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Power conversion circuits and diodes
Trường học Massachusetts Institute of Technology
Chuyên ngành Circuits and Electronics
Thể loại Lecture notes
Năm xuất bản 2000
Thành phố Cambridge
Định dạng
Số trang 20
Dung lượng 202,46 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Power Conversion Circuits PCCPower efficiency of converter important, so use lots of devices: MOSFET switches, clock circuits, inductors, capacitors, op amps, diodes PCC 110V 60Hz + – 5V

Trang 1

6.002 Fall 2000 Lecture 24 1

6.002 CIRCUITS AND

ELECTRONICS

Power Conversion Circuits

and Diodes

Trang 2

Power Conversion Circuits (PCC)

Power efficiency of converter important,

so use lots of devices:

MOSFET switches, clock circuits,

inductors, capacitors, op amps, diodes

PCC

110V

60Hz

+ – 5V DC

solar cells,

DC-to-DC UP converter

R

Trang 3

6.002 Fall 2000 Lecture 24 3

First, let’s look at the diode

Can use this exponential model with

analysis methods learned earlier

„ analytical „ graphical „ incremental

(Our fake expodweeb was modeled after this device!)

D

v

D

i

D

v

D

i

S

I

D

v

+ –

D

i

= I e 1

D

V v

S D

A 10

IS = −12

V 025

0

VT =

q

T

k

VT = Boltzmann’s constanttemperature in Kelvins

charge of an electron

Trang 4

Another analysis method:

piecewise–linear analysis

P–L diode models:

D

v

D

i

0

Ideal diode model

Æ i D = 0

“open”

or off

v D < 0

Æ v D = 0

“short”

or on

i D ≥ 0

Trang 5

6.002 Fall 2000 Lecture 24 5

D

v

D

i

V 6 0

0

vD =

0

iD =

“Practical” diode model

ideal with offset

V 6 0

+ –

Another analysis method:

piecewise–linear analysis

Open segment

Short segment

Trang 6

Another analysis method:

piecewise–linear analysis

„ Replace nonlinear characteristic with

linear segments.

„ Perform linear analysis within each

segment.

Piecewise–linear analysis method

Trang 7

6.002 Fall 2000 Lecture 24 7

(We will build up towards an AC-to-DC converter)

R vO

+

+ –

I

v

V 6

0

+ –

Example

Consider

v I is a sine wave

Trang 8

vO =

0

i D =

“Open segment”:

R

+ – vI

+

+ –

V 6

0 6

.

0

v I <

R vO

+

+ –

I

v

(v 0 6)/ R

i D = I

6 0 v

vO = I

“Short segment”:

R

+ –

+

+ –

V 6 0

6

.

0

v IvI

Example

V 6

0

circuit

Trang 9

6.002 Fall 2000 Lecture 24 9

Example

t

6

.

0

I

v

O

v

Trang 10

Now consider — a half-wave rectifier

I

O

v

+ –

+ –

V 6

0

+–

C

Trang 11

6.002 Fall 2000 Lecture 24 11

A half-wave rectifier

t

diode on diode off

C

current pulses charging capacitor

MIT’s supply shows

“snipping” at the peaks

(because current drawn

at the peaks)

I

v

O

v

Demo

Trang 12

DC-to-DC UP Converter

The circuit has 3 states:

I S is on, diode is off

i increases linearly

II S turns off, diode turns on

C charges up, v O increases

III S is off, diode turns off

C holds v (discharges into load)

t

S

v

S

closed S

open

T

p

T

O

v

+

+ –

DCI

V

C

S

i

switch

S

Do not use resistive elements!

Trang 13

6.002 Fall 2000 Lecture 24 13

More detailed analysis

I Assume i(0) = 0, vO(0) > 0

S on at t = 0, diode off

+ –

I

i

L

O

v

t

i

L

T

V

T

i ( ) = I

T

dt

di L

VI =

i is a ramp

L

VI

= slope

2

) T (

Li 2

1 : T t

at stored energy

Δ

L

T

V

E I

2

2

2

= Δ

Trang 14

II S turns off at t = T

diode turns on (ignore diode voltage drop)

+ –

I

L

O

v

S

i

Diode turns off at T′ when i tries to go negative.

t

i

T 0

L

T

VI

LC

O

1

=

ω

T ′ TP

State III starts here

Trang 15

6.002 Fall 2000 Lecture 24 15

II S turns off at t = T, diode turns on

Diode turns off at T′ when I tries to go negative.

LC

O

1

=

ω

ignore

diode

drop vO(T )

O

v

T

0

Capacitor voltage

P

T

O

v

Δ

t

i

T 0

L

T

VI

T ′ TP

LC

O

1

=

ω

III.

Let’s look at the voltage profile

Trang 16

II S turns off at t = T, diode turns on

LC

O

1

=

ω

ignore

diode

drop vO(T )

O

v

T

0

Capacitor voltage

P

T

O

v

Δ

t

i

T 0

L

T

VI

T ′ TP

LC

O

1

=

ω

III.

Let’s look at the voltage profile

Trang 17

6.002 Fall 2000 Lecture 24 17

III S is off, diode turns off

C holds v O after T′

i is zero

+ –

I

+

Eg, no load

O

v

0

Capacitor voltage

P

T

Trang 18

III S is off, diode turns off

C holds v O after T′

i is zero

until S turns ON at T P, and cycle repeats

I II III I II III …

Thus, v O increases each cycle, if there is no load

O

v

)

(n

vO

+ –

I

+

Eg, no load

Trang 19

6.002 Fall 2000 Lecture 24 19

What is vO after n cycles Æ vO(n) ?

Use energy argument … (KVL tedious!)

Each cycle deposits ∆E in capacitor.

2

) T t

( i

L 2

1

E = = Δ

2 I

L

T

V L 2

1

=

L

T

V 2

1 E

2

2 I

= Δ

After n cycles, energy on capacitor

L 2

T

nV E

n

2

2 I

= Δ

This energy must equal 2

O( n )

Cv 2 1

or

LC

T

nV )

n ( v

2

2 I

LC

1

O =

ω

n T

V )

n (

so,

L 2

T

nV )

n (

Cv 2

1 2 I 2 2

Trang 20

How to maintain vO at a given value?

recall

L

T

V

E I

2

2

2

= Δ

Another example of negative feedback:

T v

v

T v

vO ref

then if

then if

O

v

+

+

I

control

change T

T

p

T

pwm

+ vref

compare –

O

v

Ngày đăng: 22/12/2013, 19:17

TỪ KHÓA LIÊN QUAN

w