1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu Circuits & Electronics P15 docx

19 246 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Second-Order Systems
Trường học Massachusetts Institute of Technology
Chuyên ngành Circuits and Electronics
Thể loại bài giảng
Năm xuất bản 2000
Thành phố Cambridge
Định dạng
Số trang 19
Dung lượng 186,8 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

6.002 CIRCUITS ANDELECTRONICS Second-Order Systems... Second-Order SystemsC 5V + – 5V CGS large loop 2KΩ 50Ω 2KΩ Demo Our old friend, the inverter, driving another.. Now, let’s try to s

Trang 1

6.002 CIRCUITS AND

ELECTRONICS

Second-Order Systems

Trang 2

Second-Order Systems

C

5V

+ –

5V

CGS

large loop

2KΩ

50Ω 2KΩ

Demo

Our old friend, the inverter, driving another

The parasitic inductance of the wire and

the gate-to-source capacitance of the

MOSFET are shown

[Review complex algebra appendix for next class]

S

Trang 3

Second-Order Systems

C

5V

+

5V

CGS

large loop

2KΩ

50Ω 2KΩ

Demo

+ –

2KΩ

B L

Relevant circuit:

S

Trang 4

Now, let’s try to speed up our inverter by

closing the switch S to lower the effective

resistance

t

vA

5

0

vB

vC

Observed Output

2 kΩ

2kΩ

Trang 5

vA

5

0

vB

vC

50

Huh!

Trang 6

v, i state variables

+

– ( t )

v

)

(t

vI

) ( t i

Node method:

dt

dv C t

i ( ) =

dt

dv C dt

v

v L

t

I − =

) (

1

2

2

) (

1

dt

v

d C v

v

I

v

v dt

v

d

dt

di L v

i dt v

v L

t

) (

1

Recall

First, let’s analyze the LC network

Trang 7

Recall, the method of homogeneous and particular solutions:

( ) t v ( ) t v

1

2

3

Find the particular solution.

Find the homogeneous solution.

L

4 steps

The total solution is the sum of the particular and homogeneous.

Use initial conditions to solve for the remaining constants.

Solving

Trang 8

And for initial conditions

v(0) = 0 i(0) = 0 [ZSR]

I

v

0

V

Let’s solve

I

v

v dt

v

d

For input

Trang 9

1 Particular solution

0 2

2

V

v dt

v

d

0

V

Trang 10

2

2

=

dt

v

d LC

Solution to

Homogeneous solution

2

Recall, v H : solution to homogeneous

equation (drive set to zero) Four-step method:

2

t j 1

H A e o A e o

v = ω + − ω

General solution,

Roots

LC

1

o = ω

Assume solution of the form*

A

? s

, A , Ae

so, LCAs2est + Aest = 0

* Differential equations are commonly

1

=

j LC

j

B

LC

s2 = − 1 characteristicequation

Trang 11

Total solution

3

Find unknowns from initial conditions.

t

j 2

t

j 1

0 A e o A e o V

) t (

) ( )

( )

v = P + H

0 )

0

v

2 1

0

0 )

0

i

t j o 2

t j o

1 j e o CA j e o CA

) t (

dt

dv C t

i ( ) =

so, 0 = CA1 j ωoCA2 j ωo

A

V0 = 2

2

0 1

V

Trang 12

Remember Euler relation

(verify using Taylor’s expansion)

x j

x

e jx = cos + sin

x

e

cos

t sin CV

) t (

t cos V

V )

t (

LC

1

o = ω

Total solution

3

The output looks sinusoidal

Trang 13

(t v

0

2V

0

V

0

2

π

2

3 π

)

(t

i

o 0

0

2

π

2

3 π

Plotting the Total Solution

Trang 14

Summary of Method

1

2

3

Write DE for circuit by applying

node method.

and trial & error.

solve for remaining constants using

initial conditions.

Obtain characteristic equation Solve characteristic equation

for roots si .

terms.

D C A B

Trang 15

What if we have:

We can obtain the answer directly from

V

vC ( 0 ) =

0 )

0

C

i

C

C

v

Example

Trang 16

We can obtain the answer directly from

t

j 2

t

j 1

C( t ) A e o A e o

V

vC ( 0 ) =

0 )

0

C

i

2

1 A A

V = +

o 2

o

1 j CA j CA

or

2

2 1

V A

( j t j t )

2

V

or

t cos V

t sin CV

V

vC ( 0 ) =

0 )

0

C

i

C

C

v

Example

Trang 17

o

ω π

2

C

v V

C

i

t

o

ω π

2

o

o

Example

Trang 18

2 2

2

2

1 2

1 2

1

CV Li

Notice

Energy

2

2

1

C

2

2

1

L

t

o

ω π

2

C

E

2

2

1

CV

t

o

ω π

2

L

E

2

2

1

CV

Total energy in the system is a constant,

but it sloshes back and forth between the

Capacitor and the inductor

Trang 19

RLC Circuits

add R

no R

+

+ – ( t )

v

)

(t

vI

) ( t i

) ( t v

t

Damped sinusoids with R – remember demo!

Ngày đăng: 12/12/2013, 22:15

w