Sinusoids important because signals can be represented as a sum of sinusoids.. Response to sinusoids of various frequencies -- aka frequency response -- tells us a lot about the system
Trang 16.002 CIRCUITS
6.002 Fall 2000 Lecture 16
Trang 2Review
5V
C
R
L
v
to sinusoidal drive
Sinusoids important because signals can be
represented as a sum of sinusoids Response to sinusoids of various frequencies aka frequency response tells us a lot about the system
6.002 Fall 2000 Lecture 16
Trang 3For motivation, consider our old friend,
the amplifier:
S
V
v O
v i
C
v
+ – + –
GS
C
R
V BIAS
Observe v o amplitude as the frequency of the
input v i changes Notice it decreases with
frequency
Also observe v o shift as frequency changes
(phase)
Need to study behavior of networks for
sinusoidal drive
Demo
6.002 Fall 2000 Lecture 16
Trang 4Example:
+ –
+
–
v I (t) = V i cosωt for t ≥ 0 (V i real)
I
v
6.002 Fall 2000 Lecture 16
Trang 511 11
ectu r
+ –
R
Our Approach
i
lectu
re
sneaky approach
very sneaky
Usual approach
2 s
hi
6.002 Fall 2000 Lecture 16
Trang 61 Set up DE
2 Find v p
3 Find v H
4 v C = v P + v H, solve for unknowns
using initial conditions
6.002 Fall 2000 Lecture 16
Trang 7Usual approach…
1 Set up DE
RC dv C + v C = v I
dt
= V i cosωt
That was easy!
6.002 Fall 2000 Lecture 16
Trang 82 Find v p
RC dv P +
dt v P = V i cosωt
First try: v P = A Æ nope
Second try: v P = A cosωt Æ nope
Third try: v P = A cos(
amplitude
φ
ωt + ) frequency
phase
− RCAω sin(ωt +φ) + A cos(ωt +φ) = Vi cosωt
− RCAω sin ωt cosφ − RCAω cosωt sin φ +
A cosωt cosφ − Asinωt sinφ = V i cosωt
6.002 Fall 2000 Lecture 16 8
Trang 96.002 ll 2000 Lecture 16 9
Let’s get sneaky!
p
PS V e
v =
st
i
st
p
st
p
e V e
V
dt
e
dV
st
i
st
p
st
p e V e V e
i
p V V
) 1 sRC
sRC
1
V
p = +
Nice property
of exponentials
IS
PS
PS v v
dt
dv
st
i e V
=
Find particular solution to another input…
p
sRC
1
V
+
=
st
i e V
where we replace s = jω
i e
V ω
solution for
t j
i e RC
j
V ω
ω ⋅
+
1
Fa
Trang 102 Fourth try to find v P…
using the sneaky approach
V i e jωt
was easy
= real[V i e jωt ]= real[v IS ]
from Euler relation,
j
I
IS
real part
real
part
e jωt = cosωt + sin ωt
an inverse superposition argument,
assuming system is real, linear
6.002 Fall 2000 Lecture 16 10
Trang 11
2 Fourth try to find v P…
P
v = Re[v PS ]= Re[V p e jωt ]
V i
= Re 1+ jωRC ⋅ e jωt
= ReV i (1− jωRC) ⋅ e jωt
= Re 1 + ω2 R 2 C 2
V i ⋅ e jφe jωt
,tanφ = −ωRC
= Re + 1 ω2 R 2 C 2
V i ⋅ e j( ωt + φ )
v P =
C R
1 + ω2 2 2
6.002 Fall 2000 Lecture 16 11
Trang 123 Find v
−t
6.002 Fall 2000 Lecture 16
Trang 134 Find total solution
v C = v P + v H
t
−
v C = 2 2 2
C R
1 + ω
V i
cos(ωt +φ ) + Ae RC
where φ = tan−1( −ωRC )
so,
A = −
1+ ω2 R2C 2
V i
cos(φ)
6.002 Fall 2000 Lecture 16
Trang 14We are usually interested only in the
particular solution for sinusoids,
t
−
2 2
2
i
C R
1
V
+
=
ω
tan where φ =
A = −
p
V
RC
t
Ae )
t +φ + −
ω
)
RC (
1 −ω
−
cos(
1 2 2 2 φ
ω R C
V i
+
0
v
)
Described as
SSS: Sinusoidal Steady State
p
V
∠
6.002 Fall 2000 Lecture 16
Trang 15All information about SSS is contained
Recall
RC j
1
V
p = + ω
Steps 3 , were a waste of time!
4
=
V i 1+ jωRC
V p
ω2 2 2
i 1 R C
1
e jφ where
φ = tan −1 −ωRC
2 2 2
1
1
C R
V
V
i
p
ω
+
=
RC
V
V
i
magnitude
6.002 Fall 2000 Lecture 16
Trang 16Visualizing the process of finding the
sneak
in
V i e jωt
drive
algebraic equation
+ complex algebra
take real part
t
j
p e
particular solution
t
+ nightmare trig
the sneaky path!
6.002 Fall 2000 Lecture 16
Trang 17transfer function
V
H ( jω) =
V
p
i
2 2
2
1
1
C R V
V
i
p
ω
+
=
V p
1
V i
log scale
ω
for high frequencies!
6.002 Fall 2000 Lecture 16
Trang 18φ = tan −1 −ωRC
V
φ = ∠ p
V i
0
π
−
4
π
−
2
ω
RC
1
=
ω
log scale
6.002 Fall 2000 Lecture 16