1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu Circuits & Electronics P16 pptx

18 274 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Sinusoidal steady state
Trường học Massachusetts Institute of Technology
Chuyên ngành Circuits and Electronics
Thể loại Lecture
Năm xuất bản 2000
Thành phố Cambridge
Định dạng
Số trang 18
Dung lượng 320,04 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Sinusoids important because signals can be represented as a sum of sinusoids.. Response to sinusoids of various frequencies -- aka frequency response -- tells us a lot about the system

Trang 1

6.002 CIRCUITS

6.002 Fall 2000 Lecture 16

Trang 2

Review

5V

C

R

L

v

to sinusoidal drive

Sinusoids important because signals can be

represented as a sum of sinusoids Response to sinusoids of various frequencies aka frequency response tells us a lot about the system

6.002 Fall 2000 Lecture 16

Trang 3

For motivation, consider our old friend,

the amplifier:

S

V

v O

v i

C

v

+ – + –

GS

C

R

V BIAS

Observe v o amplitude as the frequency of the

input v i changes Notice it decreases with

frequency

Also observe v o shift as frequency changes

(phase)

Need to study behavior of networks for

sinusoidal drive

Demo

6.002 Fall 2000 Lecture 16

Trang 4

Example:

+ –

+

v I (t) = V i cosωt for t ≥ 0 (V i real)

I

v

6.002 Fall 2000 Lecture 16

Trang 5

11 11

ectu r

+ –

R

Our Approach

i

lectu

re

sneaky approach

very sneaky

Usual approach

2 s

hi

6.002 Fall 2000 Lecture 16

Trang 6

1 Set up DE

2 Find v p

3 Find v H

4 v C = v P + v H, solve for unknowns

using initial conditions

6.002 Fall 2000 Lecture 16

Trang 7

Usual approach…

1 Set up DE

RC dv C + v C = v I

dt

= V i cosωt

That was easy!

6.002 Fall 2000 Lecture 16

Trang 8

2 Find v p

RC dv P +

dt v P = V i cosωt

First try: v P = A Æ nope

Second try: v P = A cosωt Æ nope

Third try: v P = A cos(

amplitude

φ

ωt + ) frequency

phase

− RCAω sin(ωt +φ) + A cos(ωt +φ) = Vi cosωt

− RCAω sin ωt cosφ − RCAω cosωt sin φ +

A cosωt cosφ − Asinωt sinφ = V i cosωt

6.002 Fall 2000 Lecture 16 8

Trang 9

6.002 ll 2000 Lecture 16 9

Let’s get sneaky!

p

PS V e

v =

st

i

st

p

st

p

e V e

V

dt

e

dV

st

i

st

p

st

p e V e V e

i

p V V

) 1 sRC

sRC

1

V

p = +

Nice property

of exponentials

IS

PS

PS v v

dt

dv

st

i e V

=

Find particular solution to another input…

p

sRC

1

V

+

=

st

i e V

where we replace s = jω

i e

V ω

solution for

t j

i e RC

j

V ω

ω ⋅

+

1

Fa

Trang 10

2 Fourth try to find v P

using the sneaky approach

V i e jωt

was easy

= real[V i e jωt ]= real[v IS ]

from Euler relation,

j

I

IS

real part

real

part

e jωt = cosωt + sin ωt

an inverse superposition argument,

assuming system is real, linear

6.002 Fall 2000 Lecture 16 10

Trang 11

2 Fourth try to find v P

P

v = Re[v PS ]= Re[V p e jωt ]

V i

= Re 1+ jωRC ⋅ e jωt



= ReV i (1− jωRC) ⋅ e jωt

= Re1 + ω2 R 2 C 2

V i ⋅ e jφe jωt

 ,tanφ = −ωRC

= Re + 1 ω2 R 2 C 2

V i ⋅ e j( ωt + φ )



v P =

C R

1 + ω2 2 2

6.002 Fall 2000 Lecture 16 11

Trang 12

3 Find v

−t

6.002 Fall 2000 Lecture 16

Trang 13

4 Find total solution

v C = v P + v H

t

v C = 2 2 2

C R

1 + ω

V i

cos(ωt ) + Ae RC

where φ = tan−1( −ωRC )

so,

A = −

1+ ω2 R2C 2

V i

cos(φ)

6.002 Fall 2000 Lecture 16

Trang 14

We are usually interested only in the

particular solution for sinusoids,

t

2 2

2

i

C R

1

V

+

=

ω

tan where φ =

A = −

p

V

RC

t

Ae )

t +φ + −

ω

)

RC (

1 −ω

cos(

1 2 2 2 φ

ω R C

V i

+

0

v

)

Described as

SSS: Sinusoidal Steady State

p

V

6.002 Fall 2000 Lecture 16

Trang 15

All information about SSS is contained

Recall

RC j

1

V

p = + ω

Steps 3 , were a waste of time!

4

=

V i 1+ jωRC

V p

ω2 2 2

i 1 R C

1

e jφ where

φ = tan −1 −ωRC

2 2 2

1

1

C R

V

V

i

p

ω

+

=

RC

V

V

i

magnitude

6.002 Fall 2000 Lecture 16

Trang 16

Visualizing the process of finding the

sneak

in

V i e jωt

drive

algebraic equation

+ complex algebra

take real part

t

j

p e

particular solution

t

+ nightmare trig

the sneaky path!

6.002 Fall 2000 Lecture 16

Trang 17

transfer function

V

H ( jω) =

V

p

i

2 2

2

1

1

C R V

V

i

p

ω

+

=

V p

1

V i

log scale

ω

for high frequencies!

6.002 Fall 2000 Lecture 16

Trang 18

φ = tan −1 −ωRC

V

φ = ∠ p

V i

0

π

4

π

2

ω

RC

1

=

ω

log scale

6.002 Fall 2000 Lecture 16

Ngày đăng: 12/12/2013, 22:15