6.002 CIRCUITS Amplifiers --Small Signal Model... Saturation discipline satisfied... v In other words, our circuit behaves like a linear amplifier for small signals... Input valid opera
Trang 16.002 CIRCUITS
Amplifiers
Small Signal Model
Trang 2Review
MOSFET amp
S V
L
R
DS i
v O
v
Saturation discipline — operate
MOSFET only in saturation region
Large signal analysis
1 Find v O vs v I under saturation discipline
2 Valid v I , v O ranges under saturation discipline
Trang 3Large Signal Review
1 v O vs v I
v O = V S − K (v I −1)2
R
valid for v I ≥ V T
and
v O ≥ v I – V T
(same as i DS ≤ K v O 2 )
Trang 42 Valid operating ranges
S
O
O
v O =
v >
O
v <
v V
1V
“interesting” region
for v I Saturation discipline satisfied
Trang 5But…
S
V O
v
O
v =
I
v
v I −V
v
v
Demo
V
1V
Amplifies alright, but distorts
v
v
Amp is nonlinear … /
Trang 6Small Signal Model
~ 5V V S
~ 1V
Hmmm …
L
T
I
S
O V K v V R
v
2
2
−
−
= Amp all right, but nonlinear!
I
v
O
v
T
V
V
1 ~ 2V
Insight:
(V I , V O )
Focus on this line segment
So what about our linear amplifier ???
But, observe v I vs v O about some
point (V I , V O) … looks quite linear !
Trang 7Trick v o
i
v
I
V
O
V ( V , I V O )
O
v
∆
looks linear
Operate amp at V I , V O
Æ DC “bias” (good choice: midpoint
of input operating range)
Superimpose small signal on top of V
Response to small signal seems to be
approximately linear
Trang 8Trick v o
i
v
I
V
O
V ( V , I V O )
O
v
∆
looks linear
Operate amp at V I , V O
Æ DC “bias” (good choice: midpoint
of input operating range)
Superimpose small signal on top of V I
Response to small signal seems to be
approximately linear
Let’s look at this in more detail —
I III from a circuit viewpoint
Trang 9We use a DC bias V I to “boost” interesting input
signal above V T , and in fact, well above V T
interesting
input signal
+ – + –
S
V
L
R
v O
V
Offset voltage or bias
Trang 10Graphically
interesting
v O
S
V
L
R
+ – + –
input signal
V
S
V v O
O
V
operating point
O
I V
V ,
I
V
T
V
O v
v =
0
I −V
v
Trang 11aka incremental model
aka linearized model
Notation —
Input:
total
v I = V I + v i
DC small
variable bias signal (like ∆v I) bias voltage aka operating point voltage
Output: v O = V O + v o
Graphically,
V I
V O
Trang 12II Mathematically
(… watch my fingers)
v O = V S − R L K (v I −V T )2
V O = V S − R L K (V I −V T )
2
substituting v I = V I + v i v i << V
v O = V S − R L K ( [V I + v i ]− v T )
= V S − R L K ( [V I −V T ]2 + 2[V I − v T ]v i + v i 2
O
T
I
L
S V V
2
K
R
V − − ) − R L K (V I −V T )v
v o = −R L K ( V I −V v T )
g m related to V
Trang 13Mathematically
v o = −R L K ( V I −V v T )
g m related to V
v o = −g m R L v
For a given DC operating point voltage V I
V I – V T
v o = − A v
constant w.r.t v
In other words, our circuit behaves like a linear amplifier for small signals
Trang 14
Another way
v O = V S − R L K (v I −V T )
v o =
dv
d
I
VS − R L 2 K (v I −V T )2
⋅ v
I
I
v
slope at V
v o = −R L K (V I −V T ) ⋅ v
g m = K (V I −V T )
A = −g m R L amp gain Also, see Figure 8.9 in the course notes
for a graphical interpretation of this result
Trang 15More next lecture …
Demo
DS
i
I
V
O
v
load line
operating point
input signal response
V O
How to choose the bias point:
1 Gain component g m ∝ V I
2 v i gets big Æ distortion
So bias carefully
3 Input valid operating range
Bias at midpoint of input operating
range for maximum swing