_ Hàm phân thức dạng _Tìm tiệm cận ngang của hàm phân thức Nếu bậc tử bé hơn bậc mẫu có TCN là.. Câu 3: Đường thẳng y 2 là tiệm cận ngang của đồ thị hàm số nào trong các hàm số sau đ
Trang 1 - Bài tập minh họa:
Câu 1: Cho hàm số yf x có xlim f x 0
Ⓓ Đồ thị hàm số không có tiệm cận ngang
Lời giải Chọn C
Câu 2: Cho hàm số yf x xác định trên \ 1 , liên tục trên mỗi khoảng xác định
và có bảng biến thiên như hình vẽ
Dạng: 6 TÌM TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ
Tóm tắt lý thuyết
x x
Trang 3- Phương pháp:
_ Đồ thị hàm đa thức không có tiệm cận.
_ Hàm phân thức dạng
_Tìm tiệm cận ngang của hàm phân thức
Nếu bậc tử bé hơn bậc mẫu có TCN là
Nếu bậc của tử bậc của mẫu thì đồ thị có TCN
Nếu bậc của tử bậc của mẫu hoặc có tập xác định là 1 khoảng hữu hạn hoặc thì không có TCN
Trang 4 TCĐ
221
x
; TCN
331
TCN: Hệ số trước x chia nhau
Câu 2: Số đường tiệm cận đứng và ngang của đồ thị hàm số 2
1
x y
f x y
g x
(x)lim
Trang 51 0
x x
x y x
giá trị xác định của hàm số nên đồ thị hàm số
Câu 4: Số tiệm cận đứng của đồ thị hàm số 2
có duy nhất một tiệm cận đứng là x=- 1
tra nhanh
Trang 6
Câu 2: Cho hàm số f x
xác định, liên tục trên \ 1 và có bảng biến thiên như sau:
Khẳng định nào sau đây là sai?
A Hàm số đã cho đạt cực tiểu tại x 1. B Đồ thị hàm số không có tiệm cận đứng
C Đồ thị hàm số không có tiệm cận ngang D Hàm số không có đạo hàm tại x 1.
Câu 3: Đường thẳng y 2 là tiệm cận ngang của đồ thị hàm số nào trong các hàm số sau đây?
A
1
x y x
12
x y x
Câu 4: Cho hàm số yf x có bảng biến thiên
Hỏi đồ thị hàm số có bao nhiêu đường tiệm cận?
Câu 5: Cho hàm số yf x phù hợp với bảng biến thiên bên dưới Tổng số đường tiệm cận là:
Bài tập rèn luyện
Ⓑ
Trang 7cx d
Trang 8Đồ thị hàm số có tiệm cận đứng là đường thẳng có phương trình là
x
đường nào sao đây?
y x
11
y x
1
y x
Câu 16: Các đường tiệm cận của đồ thị hàm số
12
x y x
Trang 92022 Câu 18: Tìm đường tiệm cận ngang của đồ thị hàm số
2 21
x y
x y
x
Khẳng định nào sau đây là đúng?
A Đồ thị hàm số có tiệm cận đứng là x và tiệm cận ngang là 3 y 1.
B Đồ thị hàm số có tiệm cận đứng là x và tiệm cận ngang là 1 y 1
C Đồ thị hàm số có tiệm cận đứng là x và tiệm cận ngang là 1 y 1.
D Đồ thị hàm số có tiệm cận đứng là x và tiệm cận ngang là 1 y 3.
Câu 21: Đường tiệm cận ngang của đồ thị hàm số
22
x y
y
B Đồ thị hàm số có tiệm cận đứng là1
x
32
y
Câu 23: Cho hàm số
2 2
x x y
x y x
Đồ thị hàm số có phương trình đường tiệm cận ngang là
A x 2 0 B y1;x2 C y 1 D y 2
Trang 102022 Câu 25: Số đường tiệm cận của đồ thị hàm số 2
12
x y
khẳng định nào sau đây là khẳng định đúng?
A Đồ thị hàm số có tiệm cận ngang là y 0 và tiệm cận đứng là x 1
B Đồ thị hàm số có tiệm cận ngang là y 0 và không có tiệm cận đứng
C Đồ thị hàm số không có tiệm cận
D Đồ thị hàm số có tiệm cận đứng là x và không có tiệm cận ngang.1
Câu 28: Tìm tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
9 6
x y
y
23
y
32
y
32
y
Câu 32: Phương trình đường tiệm cận đứng của đồ thị hàm số
22
x y x
Khẳng định nào sau đây đúng?
A Đồ thị hàm số có tiệm cận đứng làx 1 B Đồ thị hàm số không có tiệm cận
Trang 11C Đồ thị hàm số có tiệm cận đứng là
32
x
D Đồ thị hàm số có tiệm cận ngang là3
2
y
Câu 34: Cho hàm số yf x có bảng biến thiên như hình vẽ dưới đây
Hỏi đồ thị của hàm số đã cho có bao nhiêu đường tiệm cận?
Trang 12Câu 38: Cho hàm số y= f x( )
có bảng biên thiên như sau:
Kết luận nào sau đây là đúng?
x y x
x y x
Trang 132022 Câu 45: Tổng số đường tiệm cận đứng và ngang của đồ thị hàm số
11
x y x
x y x
y x
24
x x y
x y
x y x
21
x y x
y x
có bao nhiêu đường tiệm cận?
Trang 142022 Câu 55: Cho hàm số
20182
y x
x y x
Hỏi tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
đã cho là bao nhiêu?
2 2
y
là tiệm cận ngang của đồ thị hàm số
Trang 152022 Câu 2: Cho hàm số f x
xác định, liên tục trên \ 1
và có bảng biến thiên như sau:
Khẳng định nào sau đây là sai?
A Hàm số đã cho đạt cực tiểu tại x 1. B Đồ thị hàm số không có tiệm cận đứng
C Đồ thị hàm số không có tiệm cận ngang D Hàm số không có đạo hàm tại x 1.
12
x y x
Từ BBT suy ra đồ thị có 1 đường tiệm cận ngang y 2
Câu 5: Cho hàm số yf x phù hợp với bảng biến thiên bên dưới Tổng số đường tiệm cận là:
Trang 16nhận điểm I3; 2
làm tâm đối xứng
Trang 172022 Câu 9: Đường tiệm cận ngang của đồ thị hàm số
5
x y x
Đồ thị hàm số có tiệm cận đứng x 2 và tiệm cận ngang y 4
Do đó giao điểm của hai đường tiệm cận là điểm M2;4.
Câu 11: Cho hàm số
1
x y x
Vậy x là đường tiệm cận đứng của đồ thị hàm số.1
Câu 12: Hình vẽ bên là đồ thị của hàm số
ax b y
cx d
Trang 18Đường tiệm cận đứng của đồ thị hàm số có phương trình là
A x 1 B x 2 C y 1 D y 2
Lời giải
Quan sát hình vẽ dễ dàng ta thấy đồ thị hàm số nhận đường thẳng x làm tiệm cận đứng.1
Câu 13: Cho hàm số yf x( ) có bảng biến thiên:
Đồ thị hàm số có tiệm cận đứng là đường thẳng có phương trình là
x
đường nào sao đây?
Trang 19y x
11
y x
1
y x
Lời giải
Đồ thị hàm số
1
y x
có tiệm cận đứng là x 0
Đồ thị các hàm số ở các đáp án B C D, , đều không có tiệm cận đứng do mẫu vô nghiệm
Câu 16: Các đường tiệm cận của đồ thị hàm số
12
x y x
2
x
x x
2
x
x x
Đường tiệm cận ngang của đồ thị hàm số là x 1
Câu 18: Tìm đường tiệm cận ngang của đồ thị hàm số
2 21
x y
Trang 20x
Câu 20: Cho hàm số
31
x y
x
Khẳng định nào sau đây là đúng?
A Đồ thị hàm số có tiệm cận đứng là x và tiệm cận ngang là 3 y 1.
B Đồ thị hàm số có tiệm cận đứng là x và tiệm cận ngang là 1 y 1
C Đồ thị hàm số có tiệm cận đứng là x và tiệm cận ngang là 1 y 1.
D Đồ thị hàm số có tiệm cận đứng là x và tiệm cận ngang là 1 y 3.
x y
Trang 21
, tiệm cận ngang là
a y
x y
y
B Đồ thị hàm số có tiệm cận đứng là1
x
32
x x y
x y x
Câu 25: Số đường tiệm cận của đồ thị hàm số 2
12
x y
Trang 22Vậy đồ thị hàm số chỉ có một đường tiệm cận đứng.
Câu 26: Phương trình đường tiệm cận ngang của đồ thị hàm số
2
x y x
khẳng định nào sau đây là khẳng định đúng?
A Đồ thị hàm số có tiệm cận ngang là y 0 và tiệm cận đứng là x 1
B Đồ thị hàm số có tiệm cận ngang là y 0 và không có tiệm cận đứng
Đồ thị hàm số có tiệm cận ngang là y 0 và không có tiệm cận đứng
Câu 28: Tìm tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
9 6
x y
Trang 23Vậy đồ thị hàm số có 3 đường tiệm cận.
Câu 30: Phương trình các đường tiệm cận của đồ thị hàm số
3
x y
y
23
y
32
y
32
y
Câu 32: Phương trình đường tiệm cận đứng của đồ thị hàm số
22
x y x
Khẳng định nào sau đây đúng?
A Đồ thị hàm số có tiệm cận đứng làx 1 B Đồ thị hàm số không có tiệm cận
Trang 24C Đồ thị hàm số có tiệm cận đứng là
32
x
D Đồ thị hàm số có tiệm cận ngang là3
có bảng biến thiên như hình vẽ dưới đây
Hỏi đồ thị của hàm số đã cho có bao nhiêu đường tiệm cận?
là đường tiệm cận đứng của đồ thị hàm số
Vậy đồ thị hàm số đã cho có 3 đường tiệm cận
Câu 35: Cho hàm số y= f x( ) có bảng biến thiên sau Hỏi đồ thị hàm số đó có mấy tiệm cận.
Lời giải
Trang 262022 Câu 38: Cho hàm số y= f x( )
có bảng biên thiên như sau:
Kết luận nào sau đây là đúng?
x y x
Trang 27
Vậy đồ thị hàm số có hai tiệm cận đứng
Câu 42: Hàm số y x 42x22020 có bao nhiêu điểm cực trị
Hai giá trị này đều không làm cho tử bằng không nên đồ thị hàm số có hai tiệm cận đứng
Vậy đồ thị hàm số có 3 đường tiệm cận
Câu 44: Đồ thị hàm số 2
61
x y x
Lời giải
Trang 282 2
Suy ra đường thẳng x là tiệm cận đứng.1
Thực ra ta có thể làm nhanh như sau: Mẫu số bằng 0 khi x nên 1 x là hai tiệm cận 1
đứng, kết hợp với y 0 là tiệm cận ngang ta suy ra đồ thị hàm số có ba tiệm cận
Câu 45: Tổng số đường tiệm cận đứng và ngang của đồ thị hàm số
11
x y x
x y x
có một tiệm cận đứng x và một tiệm cận ngang 1 y 1
Câu 46: Số đường tiệm cận của đồ thị hàm số
2 1
x y
Trang 292022 Câu 47: Số đường tiệm cận của đồ thị hàm số 2
1
y x
nên đồ thị nhận đường thẳng y 0 là tiệm cận ngang
Vậy đồ thị hàm số đã cho có hai đường tiệm cận
Câu 48: Đường cong 2
29
x y x
y x
24
x x y
2
x x x y
x y
x y x
21
x y x
Trang 30x y x
11
x
x x
11
x
x x
y x
y x
có hai đường tiệm cận
Câu 55: Cho hàm số
20182
y x
Trang 31có hai đường tiệm cận.
Câu 56: Cho hàm số 2
12
x y x
Hỏi tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
đã cho là bao nhiêu?
2 2