FӫD WKX\ӃW WѭѫQJ ÿӕL KҽS &K~QJ JyS SKҫQ TXDQ WUӑQJ WҥR UD PӝW EѭӟF QJRһF PӟL... 6DX PӝW QӳD FKX NǤ Oj 7 QJ{L VDR ÿL ÿӃQ ÿLӇP $ Fy YұQ WӕF WLӃS WX\ӃQ7D Fy WKӇ FKӑQ ÿѭӧF PӝW Vӕ KӋ QJ{L VD
Trang 2
KtQKWK˱DFiFWK̯\F{JLiR OjJL̫QJYLrQ JL̫QJ G̩\ E͡P{Q Y̵ t
Trang 33K̩P 1J͕F&ḴQ
MӨC LӨC
A MӢ ĈҪU 1
1 Lí do chӑQÿӅ tài 1
2 MөFÿtFKFӫDÿӅ tài 1
ĈӕLWѭӧng nghiên cӭu và phҥm vi nghiên cӭu 1
4 NhiӋm vө nghiên cӭu 1
3KѭѫQJSKiSQJKLrQFӭu 2
6 NhӳQJÿyQJJySFӫDÿӅ tài 2
7 Cҩu trúc và nӝi dung cӫa khóa luұn 2
B NӜI DUNG 3
&+ѬѪ1*,7+8< ӂ77ѬѪ1*Ĉ ӔI HҼP 3
6ѫOѭ ӧc vӅ cuӝ Fÿ ӡi Einstein 3
1.2 ThuyӃ WWѭѫQJÿ ӕi hҽ p cӫa Einstein 7
1.2.1 Khái quát vӅ thuyӃWWѭѫQJÿӕi hҽp 7
&ѫVӣ thӵc nghiӋm cӫa thuyӃWWѭѫQJÿӕi hҽp 8
1.2.3 Nӝi dung cӫa thuyӃWWѭѫQJÿӕi hҽp 12
1.3 Phép biӃ Qÿ әi Lorentz 14
1.3.1 Sӵ mâu thuүn cӫa phép biӃQÿәi Galileo cӫD FѫKӑc Newton vӟi thuyӃt WѭѫQJÿӕi Einstein 14
1.3.2 Phép biӃQÿәi Lorentz 16
1.3.2.1 Phép biӃQÿәi Lorentz theo tӑDÿӝ 16
1.3.2.2 Phép biӃQÿәi Lorentz theo vұn tӕc 19
1.3.2.3 Các hӋ quҧ cӫa phép biӃQÿәi Lorentz 21
Trang 41.4 Giҧ i quyӃ t mӝ t sӕ vҩ Qÿ Ӆ 25
1.5 KiӇ m nghiӋ m lí thuyӃ WWѭѫQJÿ ӕi hҽ p 29
&+ѬѪ1*,,7+8< ӂ77ѬѪ1* ĈӔI RӜNG 30
2.1 ThuyӃ WWѭѫQJÿ ӕi rӝng và các hӋ quҧ 30
2.1.1 Giӟi thiӋu vӅ thuyӃWWѭѫQJÿӕi rӝng 30
2.1.2 Các hӋ quҧ cӫa thuyӃWWѭѫQJÿӕi rӝng 31
2.1.2.1 HӋ quҧ 1 32
2.1.2.2 HӋ quҧ 2 32
2.1.2.3 HӋ quҧ 3 33
2.1.2.4 HӋ quҧ 4 34
2.2 Các ӭng dөng cӫa thuyӃ WWѭѫQJÿ ӕi rӝng 35
2.2.1 Thҩu kính hҩp dүn 35
7KLrQYăQVyQJKҩp dүn 36
2.2.3 Lӛ ÿHQ 37
9NJWUө hӑc 38
&+ѬѪ1*,,,%¬,7 Ұ37ѬѪ1*Ĉ ӔI TÍNH 41
Ĉ ӝng lӵc hӑFWѭѫQJÿ ӕi tính 41
3KѭѫQJWUuQKFѫEҧn cӫa chuyӇQÿӝng chҩWÿLӇm 41
ĈӝQJOѭӧQJYjQăQJOѭӧng 41
3.1.3 Các hӋ quҧ 42
3.2 HiӋ u ӭQJ'RSSOHUWѭѫQJÿ ӕi tính 44
3.3 Bài Tұ p 47
C KӂT LUҰN 72
D TÀI LIӊU THAM KHҦO 73
Trang 6QӅQPyQJFӫDYұWOêKLӋQÿҥLVDXQj\ Ngoài raQyFyêQJKƭDWROӟQ WURQJNKRDKӑFNӻ
WKXұW Yj ÿӡL VӕQJ %ҵQJ FKӭQJ Oj Fҧ WKӃ JLӟL SKҧL NKkP SKөFQKӳQJF{QJODRWROӟQ
9uYұ\HP FKӑQÿӅWjLWұSWUXQJQJKLrQFӭXYӅ³7KX\ӃWWѭѫQJÿӕL(LQVWHLQYj
Trang 9QKѭVDXQj\(LQVWHLQQKұQ[pW³.K{QJEҳWKӑFVLQKF~LÿҫXWKӯDQKұQFiLJuPjPuQK
FKѭDWLQ¶¶NKLӃQFKR(LQVWHLQKӗKӣLKӑFWұSYjWӕWQJKLӋSYjRORҥLѭX
9LӋFNLQKGRDQKYүQNK{QJWӕWÿҽSJuQKѭQJEӕ(LQVWHLQ FӕFKRDQKÿѭӧFWLӃS
Trang 10WUuQK WKӭ ED (LQVWHLQ GӵD YjR WKX\ӃW ÿӝQJ KӑF SKkQ Wӱ ÿӇ JLҧL WKtFK EҧQ FKҩW FӫD
FKX\ӇQ ÿӝQJ %UDRQѫ %URZQ &{QJ WUuQK WKӭ Wѭ Oj PӝW Vӵ WUuQK Ej\ WyP WҳW WKX\ӃW
WѭѫQJÿӕLKҽS&{QJWUuQKWKӭQăPOjPӝWNKҧRViWQJҳQJӑQYӅF{QJWKӭF( PF2Ĉy
OjQKӳQJF{QJWUuQKKӃWVӭFFѫEҧQÿһFELӋWOjF{QJWUuQKWKӭWѭÿiQKGҩXVӵUDÿӡL
Trang 11FӫD WKX\ӃW WѭѫQJ ÿӕL KҽS &K~QJ JyS SKҫQ TXDQ WUӑQJ WҥR UD PӝW EѭӟF QJRһF PӟL
Trang 12SaXQj\NKL{QJÿmWUӣWKjQK PӝWQKjEiF KӑFGDQKWLӃQJFy QKj EiRKӓLWjL
Trang 156DX PӝW QӳD FKX NǤ Oj 7 QJ{L VDR ÿL ÿӃQ ÿLӇP $ Fy YұQ WӕF WLӃS WX\ӃQ
7D Fy WKӇ FKӑQ ÿѭӧF PӝW Vӕ KӋ QJ{L VDR ÿ{L WKӓD WtQK FKҩW WUrQ ÿӇ TXDQ ViW
1KѭQJ WUrQ WKӵF WӃ WD NK{QJ EDR JLӡ TXDQ ViW ÿѭӧF 1Kѭ Yұ\ NK{QJ WKӇ FKҩS QKұQ
ÿӝQJ FӫD WUiL ÿҩW WURQJ P{L WUѭӡQJ rWH Fө WKӇ Oj WuP UD Vӵ KLӋQ GLӋQ QJӑQ JLy rWH
1KѭQJ WKt QJKLӋP 0LFKHOVRQ-0RUOH\ VDX Qj\ OjP Fѫ Vӣ WKӵF QJKLӋP FKӭQJ WKӵF
Trang 161ăP 0LFKHOVRQ- PӝW Vƭ TXDQ WUҿ FӫD KҧL TXkQ 0ӻ ÿm WKӵF KLӋQ WKt
QJKLӋPYӟLêÿӏQKNKiP SKi UD QJӑQJLy rWH WҥLSKzQJWKtQJKLӋP+HP%{Q ӣĈӭF
KLӋQ WѭӧQJ UXQJ Yj JLӳ WKăQJ EҵQJ
cho phép nó quay xung quanh tâm
Trang 18WKӵF KLӋQYӟLFiF KӋ TXLFKLӃX TXiQ WtQKNKiF QKDX YӟLPөF ÿtFKWuPUD PӝWKӋ TXL
NKiF PӑL KӋ TXL FKLӃX TXiQ WtQK Oj KRjQ WRjQ WѭѫQJ ÿѭѫQJ QKDX 7ӯ WLrQ ÿӅ Qj\
KӋTXLFKLӃXTXiQWtQK 1yFyJLiWUӏ c= 3.108 PVYjOjJLiWUӏYұQWӕFFӵFÿҥLWURQJWӵ
nhiên
Trang 191 6ӵ PkX WKXүQ FӫD SKpS ELӃQ *DOLOHR FӫD Fѫ KӑF 1HZWRQ YӟL WKX\ӃW
Trang 20t = t' (a)
FyQJKƭDOjWKӡLJLDQFyWtQKWX\ӋWÿӕLNK{QJSKөWKXӝFYjRKӋTX\FKLӃX
E9ӏWUtFӫD0NK{QJJLDQWDFy
[ [¶OO ' ; \ \¶] ]¶ (b) 1KѭYұ\YӏWUtNK{QJJLDQFyWtQKFKҩWWѭѫQJÿӕLSKөWKXӝFYjRKӋTX\FKLӃX
ÿ~QJ ÿӕL YӟL FiF FKX\ӇQ ÿӝQJ FKұP
Hình 1.6
Trang 21YF 1KѭQJ U} UjQJ Oj FK~QJ PkX WKXүQ YӟL FiF WLrQ ÿӅ FӫD WKX\ӃW WѭѫQJ ÿӕL
Trang 22x =E[¶9W¶) (I-5) (E OjKӋVӕQKkQ
Trang 23[[¶ F2tt¶ Į2(x-Vt)(x+VW¶ Į2(ct-9W FW¶9W¶
'үQÿӃQ FWW¶ Į2(c2WW¶F9tt¶-cVWW¶-V2WW¶
hay: c2 Į2(c2-V2), suy ra
2 2
9ұ\
2 2
'1
x Vt x
V c
2 2
1
x Vt x
V c
2 2 2
'1
V
t x c t
V c
2 2 2
' '1
V
t x c t
V c
9uKӋ.¶FKX\ӇQÿӝQJGӑFWKHRWUөF[QrQ\ \¶Yj] ]¶7DWKXÿѭӧFF{QJ
WKӭFELӃQÿәL/RUHQW]
2 2
'1
x Vt x
V c
2 2
'1
V
t x c t
V c
(I-7)
(I- FKRSKpSELӃQÿәLWӑDÿӝYjWKӡLJLDQWӯKӋ.VDQJKӋ.¶
2 2
'1
x Vt x
V c
2 2
' '1
V
t x c t
V c
(I-8)
(I- FKRSKpSELӃQÿәLWӑDÿӝYjWKӡLJLDQ WӯKӋ.¶VDQJKӋ.
(I-7) (I- ... 79
Mөc lөc hình ҧ nh
Hình 1.1 Albert Einstein (1879-1955)
Hình 1.2 Sѫÿӗ thí nghiӋm Fizeau
Hình 1.3 HӋ VDRÿ{L
Hình