1. Trang chủ
  2. » Y Tế - Sức Khỏe

THI K2 TOAN 9 TK3

3 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 124,68 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Do 3 công nhân chuyển đi làm việc khác nên mỗi người còn lại phải làm thêm 4 dụng cụ.. Tính số công nhân lúc đầu của tổ nếu năng suất của mỗi người là như nhau.[r]

Trang 1

MA TRẬN ĐỀ KIỂM TRA HỌC KỲ II MÔN TOÁN 9 – NĂM HỌC: 2011-2012

Bài 1: (2 điểm) Không dùng máy tính, hãy giải phương trình và hệ phương trình sau:

a) 5x2 7x 6 0  ; b)

2 1

3 2 12

x y

x y

 

 

Bài 2 : (2điểm) Cho phương trình x2 2m1x m 22, trong đó m là tham số

a) Với giá trị nào của m thì phương trình trên có nghiệm?

b) Gọi x x1 , 2 là hai nghiệm của phương trình trên Tìm m để 3x x1 2   7 5x1 x2

Bài 3: (2,5điểm) Giải bài toán bằng cách lập phương trình hoặc hệ phương trình.

Một tổ công nhân phải làm 144 dụng cụ Do 3 công nhân chuyển đi làm việc khác nên mỗi người còn lại phải làm thêm 4 dụng cụ Tính số công nhân lúc đầu của tổ nếu năng suất của mỗi người là như nhau

Bài 4: (3,5điểm)

Cho hình vuông ABCD, lấy một điểm M bất kỳ trên cạnh BC (M khác B và C)

Qua B kẻ đường thẳng vuông góc với đường thẳng DM tại H, kéo dài BH cắt đường thẳng

DC tại K

a) Chứng minh tứ giác BHCD nội tiếp đường tròn Xác định tâm I của đường tròn đó b) Chứng minh KMDB

c) Chứng minh KC KD KH KB

d) Giả sử hình vuông ABCD có là a Tính thể tích của hình do nửa hình tròn tâm I quay một vòng quanh đường kính

-HẾT -ĐỀ KIỂM TRA HỌC KỲ II NĂM HỌC 2011 – 2012 Môn : TOÁN 9

Thời gian làm bài : 90 phút (không kể thời gian phát đề)

ĐỀ CHÍNH THỨC

Trang 2

HƯỚNG DẪN CHẤM VÀ THANG ĐIỂM MÔN TOÁN 9

HỌC KỲ II – NĂM HỌC 2011 -2012

1a

(1,0đ)

2

5x  7x 6 0  Ta có   49 120 169 0   

Vậy PT đã cho có hai nghiệm phân biệt: 1

7 169

2 10

x   

; 2

7 169 3

10 5

x   

0,5 0,5

1b

(1,0đ)

2 1

3 2 12

x y

x y

 

 

4 2 2

3 2 12

x y

x y

 

 

7 14

3 2 12

x

x y

 

2 3.2 2 12

x y

 

2 3

x y



Vậy hệ PTđã cho có nghiệm duy nhất x y ;  2; 3 

0,5

0,25

0,25

2a

(1,0đ) Phương trình  

xmx m  có nghiệm    0

 (-(2m + 1))2 – 4(m2 + 2) > 0

7 4

m 

Vậy với

7 4

m 

thì PT đã cho có nghiệm

0,25 0,25 0,25 0,25

2b

(1,0đ) Với

7 4

m 

, PT đã cho có nghiệm Theo hệ thức Viét, ta có:

x1 x2  2m 1 và x x1 2 m2  2

Theo đề bài : 3x x1 2   7 5x1 x2  3m2  2  7 5 2 m 1

 3m2 10m   8 0 1

7 2 4

m  

(nhận); 1

4 7

m 

(không thỏa điều kiện) Vậy với m 1 2 thì 3x x1 2   7 5x1 x2

0,25 0,25

0,25 0,25

3

(2,5đ) Gọi x (người) là số công nhân của tổ lúc đầu Điều kiện x nguyên và x 3

Số dụng cụ mỗi công nhân dự định phải làm là:

144

x (dụng cụ)

Số công nhân thực tế khi làm việc là: x  3 (người)

Do đó mỗi công nhân thực tế phải làm là:

144 3

x  (dụng cụ) Theo đề bài ta có phương trình:

144 144

4 3

x  x

Rút gọn, ta có phương trình : x2 3x 108 0 

   9 432 441   441 21 

1

3 21

12 2

x   

(nhận) ; 2

3 21

9 2

x   

(loại) Vậy số công nhân lúc đầu của tổ là 12 người

0,25 0,25

0,25 0,25 0,25

0,25 0,25 0,5 0,25

Trang 3

(1,0đ)

a) Chứng minh tứ giác BHCD nội tiếp

Ta có BCD 900(vì ABCD là hình vuông)

 90 0

BHD  (vì BHDM )

 H, C cùng thuộc đường tròn đường kính BD

Vậy tứ giác BHCD nội tiếp được đường tròn

đường kính BD, có tâm I là trung điểm đoạn BD

0,25 0,25 0,25

0,25

4b

(0,5đ)

b) Chứng minh KMDB

Trong KBD có:

( ) ( )

DH BK gt

BC DK gt

   KMDB(đường cao thứ ba)

0,5

4c

(1,0đ) c) Chứng minh

KC KD KH KB

Xét KCB và KHD có: C = H = 900; K là góc chung

 KCBKHD(g-g)

KC KB

KHKD

KC KD KH KB  (đpcm)

0,25 0,25

0,25 0,25

4d

(1,0đ)

d) Nửa hình tròn tâm I quay một vòng quanh đường kính, ta được một

hình cầu có bán kính: 2

BD

R 

Trong đó: BDa2a2 a 2 

2 2

R a

Vậy thể tích của hình cầu là:

3

4 3

V  R

3

.

3  a 2

 

  

 

3

2

3 a

(đơn vị thể tích)

0,25 0,25 0,25 0,25

H

K B

A

Ngày đăng: 13/06/2021, 22:45

w