DOI BIEN SO 7} 1 gs te"
Ị |x'd+x)& 3 4 t=1+x" | 0e +] x dx
0 18 i l t=e*
2 | |} 5 5x 5 Ax tx 7+4 0 & v4]
0 x +4] 19 i 2x t=2*
3 | x41 ih t=x+x—2 g2 TỈ
, x(n x +1)
7 | a , =cosx i 3/2 ; : x=cost
[sin xcos xdx | x vl-x' dx
[sin® xcos xdx | pe
9 | 23 t=cosx 26 | V3 — T2
| sin x& —— t=vx° +1
2
| cos” xdx [x 2” d u=2'
tan“ xả _ la
| J: In“x+l wt +1
3 | z/4 tách ra
4 tan x+ Ì dx ams Ị | (tan x + cot 2x)dx
2
0
15 | z⁄2 1 t=tan3x 5 HI2 ging t=1+3cosx
», Cos” 3x(1+ tan 3x) ) 1+3cosx
16/1 x t=e* 3 |1 2
0
Trang 2
+ |[“C& J[x+2|-|x|s& giá trị -2 va
3 e / t=Inx 6 3
1 x 0
ạ sin2x |
vax 4] l/e Mã _ :
x
| 2x+1
ay 2000 x 4 ; 2
4
1
3
| — I dx giá tri 1 va Js haa
[fx + 2x — Slax gia tri 1 J + 4x43
0
0
7 j 3x—5
0 x +4x+3
Trang 3
10
2 1
ng:
"H1 P ja
Wx +2x+2
1 one Jes+ )
| sx +4x+3 2 * Je sin xdx X ot
au
0 + k2 k2 _ ; | e* cos.xd
2 \1 32 18 | 2/4
0
3 7/4 19 ot !3
| (2x —1)cos xdx | sin In xdx
0
| (2x + 1)sin xdx | x(1+ tan? x)adx
| (2x —1)cos?(ax)dx | [ x +cos” x| sin xdx
0
10 es, x’ Inxax
¬