HE PHUONG TRINH VO TI
xV2 — yV3 =1 (V2 -1)x-y=~2 xV2 -3y=1 xV2 - yV3 =1
x+yv3 = V2 x+(V2+)y=l 2x + pV2 =-2 xt yv3 = V2
(-V3)x+yvV5=1 |xv6-y42=2 2x +3,/y =18 Vx —.Jy =4,5
Vx+3-2./y+1=2 x—7 yto 3 xytytxax’-2y x+y-A|xy=3
Vx-7 Jy+6 6 Jx-y = Jx-y J2xtytl—Jfxty = ee hn y+l=3
vie i y-I=l Ve 421=Jy-l+y xt y=3[ [xy tify? |
Vx+5+ yt3=5 Vx-1+Jy =1 Vy? +21 =V¥x-14x Vx +i/y =6
x y+yvx =30 JVyt94+vVx-7 =4 Vx-y =3x-y-12 Vxt+4—j/l-y =v1-2x
Jy+V2-x=V2 | fy+4-2Vx =2 Vx+1+ fy =1 x+8y=Jx—y-9
l 1
[x ty’ =8 >> dl xxv + yxy =7 yy “T2
SRL
34 3 Vee xtytx ty =80 Vx +432-x-y? =-3
L y+42x '
J3+2x)y-xy? +x'[I=2x”] =>! In, y-2=7 Ta
y x xy
I+Ajl+(x-y) =xx'-x+2y] — |Ny+5†vx-2=? xf + pny =78
Jx+xjy =5 Vi ty =2 59 \xty—\Bx+2y=-1 [2x+Jy-1=5
x+y=13
lL | 4
Vi-4° —Jf1-4y? =2(x+5) TT) (ants y-l=4
vì ty tờ =—
Trang 2Vx+ 304+ Jy- 2001 = 2121 oo fe Pee
Yx- 2001+ y+ 30422121 We te ty -y* =4
x- ytay=3 MOT SO HE PHUONG TRINH KHAC
tyratyecd x tỳ eae yl
x(x- l)y(y= 1) = 36
|x+l|—ly+2|+2=0 x’ —2xy-3y’ =0
|x—2|+2y-3=0
x|x|+y|y|=-—2 f1 <1 6
x—y +x-y=S§ x’ +1+y(y +x) =4y x°+yˆ —-10x=0
x*—=x y-xy ` +y° =6 (x+l(y+x-2)=y x°+y °+4x-2y—20=0
X11: 1ÿ vt Tye y+ Ty X-Y =TIX-Y
Wty eSaty) et yeatyt2 Cty sary)
(2x +y)? —ã|4x? _—y?|+6(2x - y)? =0
2x+y+
2x—y
W(x! 2): 3 rtd ye
=3
[2 3 2 =~
xX“ +y+x y+xy +xy= 1 pc
xt +y? +xy(1+2x) =>
Cixsy ty san
Ý+V =ÏX:Y r+ Set y- 920
5 xy? +xy+1=13y’ (x+y) -—G+1=0
Trang 3x°{ y4+1)(x+y4l]) =3x° —4x41 | yy? =(5x44) (4-2) x +1+y(y+x) =4y
(x? +1] (y+x-2) =y
3
4xy+4|xˆ+y”|+ =7
* | ă (x+z|Í x'-5x=y`-5y vn [r2
x+y
(y+) (xt 2 ( ty +xy=3x'y (x—y}(x°-y") = {fs +2xy=3
3xy=x+y+l x+y -xyaxy’ (xt+y)[x°+y?)=175 \ÿ+2=-2
1 2
xếy +x=2y gry y= 35 x+y xy=5+y (2)
› (x + 2xJôx: y)z lR |7-yz7x-p) (Itxy = 19y
x? Se Sey * 4
V1ấnt-9=0 lí :yzg:y:2 yiay =-6
x(3x+2y)(x+1) =12
x +2y+4x-8=0
+ xy" =6x"
T9 (SP1-2000)
x(x +2)(2x + y)=9
l+x“y =5x
es Y= 9D C_97)
x(x7 + y7) =10y