In this chapter, you will learn about: The space-charge region boundaries represent an a step junction, the abrupt depletion layer approximation applies, no carriers exist in the space-charge region, in the bulk of the diode outside the depletion region, the semiconductor is neutral.
Trang 1Dr. Nasim Zafar Electronics 1 EEE 231 – BS Electrical Engineering
Fall Semester – 2012
COMSATS Institute of Information Technology
Virtual campus Islamabad
Trang 3PN Junction
Trang 41) The spacecharge region boundaries represent an a step junction.
2) The abrupt depletion layer approximation applies.
Trang 5Qualitative Description of Current Flow
Trang 8VoltageCurrent Characteristics of a PN Junction
Trang 9) :
i
d
a t
bi
Trang 10If forward bias is applied to the PN junction
) exp(
) exp(
kT
eV P
P
kT
eV n
n
a no
n
a po
p
Trang 11] 1 ) [exp(
)
(
n
n t
a no
n
L
x
x V
V p
x p
) exp(
] 1 ) [exp(
)
(
n
p a
po p
L
x
x kT
eV n
x n
Trang 12Minority Carrier Distribution
) exp(
] 1 ) [exp(
)
(
n
p a
po p
L
x
x kT
eV n
x
n
) exp(
] 1 ) [exp(
)
(
n
n t
a no
n
L
x
x V
V p
x
p
0 ,
0 ' , 0 ))
(
t n
<pregion>
<nregion>
Steady state condition : Steady
state condition :
Trang 13Ideal PN Junction Current
] 1 ) [exp(
)
(
) ( )
(
,
] 1 ) [exp(
)
(
) ( )
(
t
a n
po n p
n
x x
p n p
n
t
a p
no p n
p
x x
n p n
p
V
V L
p eD x
J
dx
x dn eD x
J
Similarly
V
V L
p eD x
J
dx
x dp eD x
J
p n
) (
) ( )
J
s n
p p
no
p s
L
n
eD L
p eD J
Trang 15Semiconductor Devices Semiconductor Devices
Total PN Junction Current
) (
], exp[
] 1 ) [exp(
)
(
) (
], ) (
exp[
] 1 ) [exp(
)
(
p n
p n
po
n n
n p
n p
no p p
x
x L
x
x kT
eVa L
n
eD x
J
x
x L
x
x kT
eVa L
P
eD x
J
Trang 16Semiconductor Devices Semiconductor Devices
Temperature Effect
) (
) 1 exp(
n
po n p
no
p s
s
L
n
eD L
p
eD J
kT
eVa J
J
a
i po
d
i no
N
n n
N
n p
state
steady : 2 , 2
) exp(
2
kT
E n
Js : strong function of temperature
Trang 17Reverse BiasGeneration Current
G W
e
n Rdx
e J
n R
n p
n E
E
o
i gen
o i
o no
po
i i
t
2 2
)' (
)
p p C n
n C
n np N
C
C
R
p n
i t
p n
G p
C n C
n N C
C R
p n
i t p n
' '
no p s
L
n
eD L
2
Total reverse bias current density, JR
gen s
J
n=p=0
Trang 18Forward Bias Recombination Current
) (
) (
)
p p n
n
n np R
no po
i
w
a o
i rec
a i
kT
eV eWn
eRdx J
kT
eV n
R
0
0 max
) 2
exp(
2
) 2
exp(
2
)' (
)' (
)
p p C n
n C
n np N
C
C R
p n
i t
p n
Recombination rate of excess carriers
(ShockleyReadHall model)
) 2
exp(
kT
eV J
ro rec
R = Rmax at x=o
Trang 19Total Forward Bias Current
] 1
exp[
kT
eVa J
D rec J J
J
) 2
exp(
kT
eV J
ro rec
Total forward bias current density, J
kT
eVa J
J
kT
eVa J
J
s D
ro rec
ln ln
2
ln ln
In general, (n : ideality factor)
) 2 1
( ], 1 )
[exp( n
nkT
eVa I
Trang 20SUMMARY
Trang 23VD = VZ, ID is determined by the circuit
• In case of standard diode the typical values of the break down voltage VZ of the Zener effect 20 100 V
• Zener Diode
– Utilization of the Zener effect
Trang 25Critical Electric Field & Voltage at Breakdown
B
crit s
B
eN
E V
Trang 26Zener test current
Maximum Zener current
Trang 27V Z
I Z
Z Z
Z
V Z
I
Trang 29D ZM
Z
P I
V
Trang 31Metal Contacts I-V Characteristics
Trang 32– IF >= 6 mA
Trang 33Fig 2.3537 Light emitting diodes.
LED symbol
Trang 34Table 2.4 Common LEDs.
Elements Forward voltage (VF) Color Emitted GaAs 1.5 V @ IF = 20 mA Infrared (invisible)
AlGaInP 2.0 V @ IF = 20 mA Amber (yellow) AlGaInN 3.6 V @ IF = 20 mA Blue
Trang 355 V
Trang 36Fig 2.39 Multicolor LED.