1. Trang chủ
  2. » Giáo án - Bài giảng

Chuyên đề về tích phân

9 535 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Chuyên đề về Tích phân
Trường học Trường Đại Học Sư Phạm Hà Nội
Chuyên ngành Toán học
Thể loại Chuyên đề
Thành phố Hà Nội
Định dạng
Số trang 9
Dung lượng 147,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Trường hợp tổng quát Nếu P có bậc lớn hơn hoặc bằng bậc của Q thì phân thức có thể viết thành P/Q = T + R/Q T, R lần lượt là thương và dư trong phép chia P : Q, tính tích phân hàm P/Q qu

Trang 1

Chuyên đề về tích phân

1 Tích phân hàm phân thức

các dạng cơ bản

Các trường hợp đơn giản nhất có:

I.1 =

I.2 = với n tự nhiên khác 1

I.3 =

I.4 = với a > 0

Nguyên hàm I.1, I.2 tính được dễ dàng bằng cách áp dụng công thức có trong bảng Nguyên hàm của các hàm số hợp (SGK trg 116) Nguyên hàm I.3 là bài tập 3d (SGK trg 118) – cũng chỉ là nguyên

hàm dạng (với

I.4 là bài tập 4a (SGK trg 142) Để tính tích phân này ta đổi biến: đặt x = atgt

Trường hợp tổng quát

Nếu P có bậc lớn hơn hoặc bằng bậc của Q thì phân thức có thể viết thành P/Q = T + R/Q (T, R lần lượt là thương và dư trong phép chia P : Q), tính tích phân hàm P/Q qui về tính tích phân của đa thức T và tích phân của hàm hửu tỉ R/Q Việc tính tích phân của đa thức T không có gì khó khăn Sau đây ta xét cách tính tích phân của phân thức R/Q trong đó R là đa thức có bậc nhỏ hơn bậc của

đa thức Q

Trừong hợp 1 Q là tam thức bậc hai: Q =

Có ba khả năng:

(i) Q có hai nghiệm phân biệt

, ở đây m, n là hai hằng số

Bài toán qui về tính tích phân dạng I.1

(ii) Q có nghiệm kép

Khi đó có Q = Biến đổi:

Bài toán qui về tính tích phân dạng I.1 và I.2

(iii) Q vô nghiệm

Khi đó Q = (k là hằng số) Biến đổi:

trong đó Q’ là đạo hàm của Q

Bài toán qui về tính tích phân dạng I.3 và I.4

Trường hợp 2 Q là đa thức có bậc lớn hơn 2

Việc tính tích phân của phân thức R/Q với Q là đa thức có bậc lớn hơn 2 trong trường hợp tổng quát vượt quá kiến thức PT Thường ta chỉ xét các trường hợp đặc biệt, chẵng hạn Q có thể phân tích thành nhân tử là các nhị thức bậc nhất hay tam thức bậc hai vô nghiệm Từ đó ta có thể biến đổi phân thức R/Q thành các phân thức đơn giản hơn, có mẫu là nhị thức, tam thức nói trên; và bài toán như thế cũng qui về tính tích phân có dạng I.1-4 Một số trường hợp khác đổi biến thích hợp giúp

ta đưa tích phân về dạng quen thuộc dđơn giản hơn

Trang 2

Cuối cùng cũng lưu ý là bằng cách đổi biến, nhiều tích phân của hàm lượng giác, tích phân của hàm

vô tỉ cũng đưa được về các dang tích phân trên (ví dụ bài 1c của Kummer cho trên) Nhưng ta sẽ trở lại vấn đề này sau

Các bạn hãy thử làm các bài tập sau để nắm rõ hơn phần lí thuyết nghe còn trừu tượng trên

Bài tập: Tính các tích phân:

A =

B = với a > 0

C =

D =

E =

F =

G =

HD

A dạng I.3 ĐS:

Ta đã đưa về được tích phân dạng I.1

Chú ý nguyên hàm (a khác 0) cũng là một dạng nguyên hàm thường gặp, nên chú ý

C tương tự ĐS

D f(x) = 1 + ĐS: 1 +

E f(x) =

ĐS: ln2+

F f(x) = 1 +

G đặt t =

Thêm mấy bài trích từ đề thi TS ĐH & CĐ mấy năm gần đây để các bạn làm quen

H =

Trang 3

I =

J =

K =

2.Tích phân hàm lượng giác

Các dạng thường gặp

J.1 =

J.2 =

J.3 =

J.4 =

Trên là 4 nguyên hàmlượng giác cơ bản đã học (có trong Bảng các nguyên hàm SGK)

Từ các nguyên hàm cơ bản này ta dễ dàng tính được , …

Các nguyên hàm sau cũng khá thường gặp, hơn nữa cách tính chúng rất điển hình cho cách tính tích phân các hàm lượng giác, nên cần nắm vững:

J.5 =

J.6 =

J.7 =

J.8 =

J.9 =

J.10 =

J.11 =

Tính J.5: tgx = sinx/cosx Đặt u = cosx, đưa về tính nguyên hàm hửu tỉ dạng u’/u

Trình bày gọn: = -ln|cosx| + C

Hoàn toàn tương tự với

J.6: biến đổi , đưa về tính nguyên hàm dạng J.1

Tương tự với

( Nói chung, ta chỉ phát biểu bài toán với sin, tang Bài toán với cos, cotg là tương tự, từ nay sẽ không nhắc lại

J.7: biến đổi , đưa về hai nguyên hàm cơ bản

J.8: , đặt u = cosx, đưa về nguyên hàm hàm hửu tỉ

Trang 4

Cũng có thể đặt t = tg(x/2), dẫn đến = ln|t| + C = ln|tg(x/2)| + C.

J.9: , đưa về tính hai nguyên hàm cơ bản

Cũng có thể biến đổi: , cũng đưa về hai nguyên hàm cơ bản

J.10: , đựoc nguyên hàm cơ bản và I.5

J.11: đặt u = 1/sinx, dv = , qui về tính

I = = J.11 + J.8

Từ các bài toán trên, ta thấy để tính tích phân hàm lượng giác các cách thường dùng là

1 Biến đổi đưa về tích phân cơ bản

Ví dụ ở I.6, I.7, I.9 Ta xét thêm vài thí dụ:

J.12

J.13

J.14

J.15 Giải phương trinh f(t) = = 0

2 Đổi biến đưa về tích phân cơ bản

Ví dụ ở J.5, J.8, J.10 Sau đây là một số ví dụ khác:

J.16 =

J.17 =

J.18 =

J.19 =

3 Phương pháp tích phân từng phần

ví dụ với J.11 Một số ví dụ khác:

J.20 =

J.21 =

Hướng dẫn giải các ví dụ

J.12: Mẫu = 1+cosx =

Trang 5

Chú ý dạng tổng quát cũng thường gặp:

J.13: f(x) =

J.14: f(x) =

J.15: biến đổi hàm dưới dấu tích phân g(x) = – 2cos2x

Suy ra f(t) = sin2t = 0

J.16: đặt t = tg(x/2)

Tổng quát: nguyên hàm dạng có thể hửu tỉ hóa bằng cách đặt t = tg(x/2)

Tuy nhiên khi tính tích phân của f(x) trên đoạn [a;b] phải chú ý t = tg(x/2) có được xác định trên đoạn ấy? nếu không, phải tìm cách đổi biến khác

J.17: Gọi M = mẫu thức, M’ = đạo hàm của M Biến đổi:

f(x) =

Tổng quát: : tính tương tự

J.18: f(x) =

Tổng quát: với

ta làm tương tự để biến đổi, đưa về tính hai tích phân cơ bản:

f(x) = =

Tương tự với f(x) = 1/cos(x+a)cos(x+b), 1/sin(x+a)cos(x+b)

Với : biến đổi mẫu có dạng tổng thành tích, đưa về dạng trên

J.19: mẫu = sin(x+pi/6), được dạng tích phân cơ bản

Tổng quát:

Cách khác: đặt t = tg(x/2) đưa về tích phân hữu tỉ

J.20: đặt u = x, dv = dx/cos^2x

Trang 6

J21:

-Một số đề thi TS ĐH&CĐ những năm gần đây để các bạn thực tập

D1 =

D2 =

D3 =

D4 =

D5 =

D6 =

D7 =

D8 =

D9 =

D10 =

3.Tích phân hàm vô tỉ

đổi biến

Trong nhiều trường hợp để tính tích phân ta chỉ cần đơn giản đặt t = Nhớ đổi biến thì cũng phải đổi cận lấy tích phân

Ví dụ 1: I = (Khối A-2003)

Đặt t = , ta đưa về tính tích phân hửu tỉ đơn giản

Ví dụ 2: I = (Khối A-2004)

Trang 7

Đặt t = đưa về tính tíchphân hửu tỉ

Ví dụ 3: I = (Khối B-2004)

Đặt t = , được

Một số dạng tích phân vô tỉ có cách đổi biến đặc biệt, nên nhớ:

K1 =

Đặt x = |a|sint, đưa về tích phân lượng giác quen thuộc

K2 =

Tương tự K1, đặt x = |a|sint

K3 =

Đặt x= |a|tgt, đưa về tích phân lượng giác quen thuộc

K4 =

Đặt t = x +

Cũng còn một số dạng khác nữa, nhưng trên đây là các dạng thường gặp nhất Ta làm vài ví dụ để luyện tập

Ví dụ 4:

Ví dụ 5:

Ví dụ 6:

Ví dụ 7:

Ví dụ 8:

Để tính tích phân các hàm vô tỉ ta còn dùng Phương pháp tích phân từng phần

Trở lại ví dụ 7 trên đây:

Ta còn có thể giải: đặt u = , dv = dx; bài toán qui về tính tích phân dạng K4

Ngoài ra, thường thì ta cũng phải biến đổi chút ít mới đưa về các dạng quen thuộc

Ví dụ 9:

Ví dụ 10:

Hướng dẫn giải các ví dụ

Trang 8

vd4: Dạng K1, đặt x = sint (ví dụ1 SGK trg131)

vd5: Dạng K2, đặt x = 2sint (bài tập 3.26-e SBT)

vd6: Dạng K4, đặt t = x + (bài tập 3.26-d SBT)

vd7: Dạng K3, đặt x = tgt, đưa về

Đây là tích phân lượng giác quen thuộc (xem phần tích phân luọng giác)

Cách khác: đặt t = x +

Vd8: Với tích phân dạng có cách giải rất đặc trưng là đặt x = |a|/sint Tuy nhiên có thể làm cách khác, như với ví dụ này: đặt t = 1/x đưa về tích phân dạng K2,

hoặc đơn giản hơn, đặt t = đưa về tích phân hửu tỉ quen thuộc

Vd9: Nhân lượng liên hiệp để khử căn ở mẫu,ta có ngay hai tích phân cơ bản

Vd10: Tương tự, nhân lương liên hiệp để khử căn ở mẫu, được

Với tích phân thứ hai đặt t =

Sau đây là một số bài tập tính tích phân hàm vô tỉ trích từ một số đề thi TS ĐH&CĐ mấy năm gần đây

BT1

BT2

BT3

BT4

BT5

BT6

BT7

Hướng dẫn:

BT1: đặt Cũng có thể đổi biến x = tant

BT2: đặt t =

BT3: Nhân lượng liên hiệp khử mẫu

BT4: đặt x = 2sint

BT5: đặt

Trang 9

BT6: đặt BT7: đặt

Ngày đăng: 06/08/2013, 01:25

TỪ KHÓA LIÊN QUAN

w