1. Trang chủ
  2. » Giáo án - Bài giảng

Bài tập ôn

5 142 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Hướng dẫn ôn tập học kỳ I
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán
Thể loại Tài liệu ôn tập
Định dạng
Số trang 5
Dung lượng 163,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

HƯỚNG DẨN ÔN TẬP HỌC KỲ I Môn: Toân 12 Chương trình chuẩn I/ Giải tích: Câc vấn đề cần ôn tập 1- Tập xâc định của hăm số.. Gọi A là điểm cố định của Cm xA> 0 hãy tìm m để tiếp tuyến của

Trang 1

HƯỚNG DẨN ÔN TẬP HỌC KỲ I Môn: Toân 12 (Chương trình chuẩn) I/ Giải tích: (Câc vấn đề cần ôn tập)

1- Tập xâc định của hăm số

2- Sự đơn điệu của hăm số

3- Cực trị của hăm số

4- GTLN - GTNN của hăm số

5- Tiệm cận của đồ thị hăm số

6- Khảo sât vẽ đồ thị của hăm số trong SGK

7- Một số dạng toân cơ bản liín quan đến hăm số

8- Công thức biến đổi lũy thừa, logarit

9- Hăm số mũ, lôgarit Phương trình, bất phương trình mũ, lôgarit

Giới thiệu một số băi tập ôn tập:

1/ Cho hàm số y=

3

3

x

- 2x2 + 3x (C)

a Khảo sát, vẽ (C)

b Biện luận theo m số nghiệm phương trình x3- 6x2 + 9x -3m = 0

2/ Cho hàm số y = - 31 x3 + x2 (C)

a Khảo sát vẽ (C)

b Viết phương trình tiếp tuyến của (C) đi qua A(3,0)

3/ Trên GTLN- GTNN của hàm số

Y = 2sinx + cos2x trên đoạn 0,2 

π

4/ Cho hàm số y = x4 - 10x2 + 9(C)

a Khảo sát vẽ(C)

b Tìm k để phương trình: k - x4 + 10x2 = 0 có 4 nghiệm phân biệt

5/ Cho y = 2e-xcosx Chứng minh: 2y+ 2y'+ y" = 0

6/ Cho hàm số: y= x x−+11 (C)

Trang 2

b Tìm trên (C) những điểm có toạ độ nguyên.

c Chứng minh rằng đường thẳng y = 2x + m luôn cắt (C) tại hai điểm A,B thuộc hai nhánh khác nhau của (C).Tìm quỷ tích trung điểm I của AB

7/ Cho hàm số y =

2

5 2

x

x

(C)

a Khảo sát vẽ (C)

b Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đi qua A(-2, 0)

c Tìm trên (C ) những điểm cách đều hai tiệm cận của (C)

d Tìm trên (C) những điểm có tổng các khoảng cách đến hai đường tiệm cận nhỏ nhất

8/ Tìm giá trị nhỏ nhất và giá trị lớp nhất của hàm số: y= x+ 4 −x2

9/ Cho hàm số y= x4+ mx2 - (m+1) (Cm)

a Khảo sát vẽ đồ thị khi m= 2

b Tím các điểm cố định của họ (Cm)

c Gọi A là điểm cố định của (Cm) (xA> 0) hãy tìm m để tiếp tuyến của (Cm) tại A song song với đường thẳng y= 2x

10/ Cho hàm số : y= (x-1)(x2 + mx + m) (Cm)

a Khảo sát vẻ (C) khi m = 0

b Tìm m để (Cm) cắt Ox tại 3 điểm phân biệt

c Dùng đồ thị (C) giải bất phương trình: x3 - x2 ≥ 0

11/ Cho hám số: y =

1

1 2

+

x

x

(C)

a Khảo sát vẽ đồ thị (C)

b Tìm trên (C) những điểm mà tiếp tuyến tai đó vuông góc với đường thẳng

x + 3y -2 = 0

c Chứng minh rằng trên (C) có vô số cặp điểm mà tiếp tuyến tại đÓóo Song song với nhau

Trang 3

12/ Cho hàm số: y = f(x) = x x−+11

1 khảo sát sự biến thiên và vẽ đồ thị(H) của hàm số

2 Viết phương trình tiếp tuyến của đồ thị (H) đi qua điểm A(0, 1) C/m rằng có đúng một tiếp tuyến của đồ thị (H) đi qua điểm B(0, -1)

3 Tìm tất cả các điểm có toạ độ nguyên trên đồ thị (H) 13/ Cho hàm số y = x 3x

4

1 3− có đồ thị (C)

1 Khảo sát hàm số

2 Cho điểm M thuộc đồ thị (C) có hoành độ x =2 3 Viết phương trình đường thẳng (d) đi qua M là tiếp tuyến của (C)

14/ Cho hàm số y = - x4 + 2x2 + 3 có đồ thị (C)

1 Khảo sát hàm số

2 Dựa vào đồ thị (C), hãy xác định các giá trị m để phương trình

x4 - x2 + m = 0 có 4 nghiệm phân biệt

15/ Tìm giá trị lớn nhất và nhỏ nhất của hàm số:

f(x) = lnx x trên đoạn [ ]1 e; 2

16/ Cho hàm số y= 3 2

3

1

x

x − có đồ thị (C)

1 Khảo sát hàm số

2 Viết phương trình các tiếp tuyến của (C) đi qua điểm A(3, 0)

17/ Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: y= 2sinx - sin 3x

3

4

trên đoạn [0 , π] 18/ Cho hàm số y = f(x) = x4 - 2x2

1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số

2 Dùng đồ thị (C), biện luận theo k số nghiệm của phương trình:

x4 - 2x2 - k = 0

Trang 4

19.Giải cac phương trình sau:

a.2x2 + − 3x 4 = 4x− 1 b.3 2x− 3 = 9x2 + − 3x 5

c.7 3x+ 9.5 2x = 5 2x+ 9.7 3x d.8 2 36.3 2

x

x

x+ = −

e.6.9x− 13.6x+ 6.4x = 0 f 5 x− 5 1 − x + = 4 0

g.(5 − 24)x+ + (5 24)x = 10

20.Giải phương trình sau:

a.log ( 4 x+ − 3) log ( 4 x− = − 1) 2 log 8 4 b.log ( 2 x− + 3) log ( 2 x− = 1) 3

8

log (x− − = 2) 2 6log x− 3 d. 2

5 log −x(x − 2x+ 65) 2 =

e 2

log x− 5log x+ = 6 0 f.lg 2x− 3lgx= lgx2 − 4

f.1 log ( + 2 x− = 1) logx−1 4

21 Giải các bất phương trình sau:

a.7.3x+ 1 + 5x+ 3 ≤ 3x+ 4 + 5x+ 2 b.5.4x+ 2.25x− 7.10x < 0

c.3x+ 9.3 −x− > 10 0 d 1

4

4x+ − 16x< 2 log 8

8

2 log (x − 4x+ < − 6) 2

2

log (x+ ≤ 1) log (2 −x) h 2

log x+ 5log x− > 4 0

II/ Hình học:

1 Ôn tập các dạng toán về khối đa diện quen thuộc như: Khối chóp, lăng trụ, khối hộp

2 Ôn tập các dạng toán quen thuộc về khối tròn xoay như: Khối nón, khối trụ

3 Ôn tập các dạng toán về mặt cầu như: Mặt cầu ngoại tiếp đa diện, tương giaocủa mặt cầu với mặt phẳng, đường thẳng

Giới thiệu một số bài tập ôn tập:

Bài1: Cho tứ diện đều SABC cạnh a, gọi H là hình chiếu vuông góc của S lên

mp(ABC)

a/ Tính thể tích của tứ diện

b/ Xác định tâm và tính bán kính mặt cầu ngoại tiếp tứ diện

c/ Gọi K là trung điểm của SH chứng minh KA, KB, KC đôi một vuông góc

Bài 2: Cho hình chóp tứ giác đêù S.ABCD có cạnh đáy bằng a, góc ASB = 300

a/ Tính thể tích của hình chóp

b/ Xác định tâm, tính bán kính của mặt cầu ngoại tiếp hình chóp

Trang 5

Bài 3: Trên các đường tròn đáy của một hình trụ có chiều cao h, bán kính R, lấy hai điểm A, B xác định khoảng cách giữa AB với trục hình trụ trong các trường hớpau: a/ AB = 3h/2

b/ Góc giữa AB và mặt đáy bằng 600

Bài 4: Một hình nón có bán kính đáy R, thiết diện qua trục là tam giác đều, gọi A là điểm cố định trên đường tròn đáy (O), M là điểm di động trên đường tròn (O) Đặt góc AOM= 2a (0<a< 900)

a/ Tính Sxq, thể tích khối nón

a/ gọi H là hình chiếu của O trên (SAM) tính OH theo R và a

Bài 5: Cho một mặt cầu đường kính AB = 2R Cắt mặt cầu bởi mặt phẳng(P) vuông góc với AB tại H sao cho AH = x (0<x<2R) ta được thiết dện là hình tròn (C) gọi MNPQ là hình vuông nội tiếp trong đường tròn (C)

a/ Tính bán kính và diện tích hình tròn (C)

b/ Tính cạnh của hình vuông và các đoạn thẳng AM, BM

Ngày đăng: 21/07/2013, 01:25

Xem thêm

HÌNH ẢNH LIÊN QUAN

II/ Hình học: - Bài tập ôn
Hình h ọc: (Trang 4)

TỪ KHÓA LIÊN QUAN

w