GV yêu cầu HS đọc đề suy nghĩ tìm hướng giải H Cần vận dụng kiến thức nào để rút gọn HS hoạt đôïng nhóm mỗi nhóm giải một câu của bài 13 lên bảng phụ GV cùng HS nhận xét kết quả của mỗi
Trang 1Tuần 1
Tiết 1 Chương I CĂN BẬC HAI CĂN BẬC BA
B.CHUẨN BỊ: Học sinh ôn lại khái niệm căn bậc hai đã học ở lớp 7
C CÁC HOẠT ĐỘNG DẠY HỌC
1)Kiểm tra (5 phút) `
H.Nêu định nghĩa căn bậc hai của số a không âm? Số dương a có mấy căn bậc hai, được kí hiệu như thế nào?
2)Bài mới: ( 25ph)
Hoạt động của giáo viên và
học sinh
Nội dung
Gv:Nhắc lại đn căn bậc hai của
số a không âm,căn bậc hai của
số dương a, căn bậc hai của 0
?1:Học sinh đứng tại chỗ trả
lời:
Gv:Ta có số 9 có hai cbh là 9
=3 và− 9=-3 thì số 9 3 = được
gọi là căn bậc hai số học của số
H.vậy với số a≥ 0nếu có x= a
thì x phảu thỏa mãn điều kiện
gì?
Gv nêu chú ý
HS xem giải mẫu sgk câu b
?2 ?3 Hai hs lên bảng giải ,hs
cả lớp cùng làm ,nêu nhận xét
bài trên bảng
1)Căn bậc hai số học:
Định nghĩa : (sgk)
Ví dụ1:
Căn bậc hai số học của 36 là 16(=4)
Căn bậc hai số học của 5là 5
Chú y ù :Với a≥ 0,tacó: x= 2
0
a a
* Phép tìm căn bậc hai số học của số
không âm gọi là phép khai phương
?3 CBH của 64 là 64 8 = và
Trang 2Gv: với 4<9 thì ta có 4 2 = <
9 3 =
H.Với a,b không âm ,nếu có a
< b thì tring hai số a,b số nào
lớn hơn? (hs thảo luận )
4= 16 mà 16>15⇒ 16> 15 ⇒4> 15 b) HS trình bày
Ví dụ3:sgk
?5 HS ghi
3)Củng cố: (13 phút) Học sinh làm ?4 và ?5 Bốn hs lên bảng trình
bày
Hs lớp nhận xét
Gv sửa ?4a vả ?5a
?4a) Ta có 16>15 nên 16 > 15 Vậy 4> 15 ?4b) và ?5b) giải tương tự
?5a) Ta có 1= 1 nên x > 1 có nghĩa là x> 1
Với x≥ 0ta có x > 1 ⇔ >x 1Vậy x>1
Giải bài tập 1.6
4).Hướng dẫn học ở nhà: (2phút) Giải các bài tập 2; 3; 4; trang 6 sgk Cho số a>0 Câu nào sau đây là câu sai?
A) a là căn bậc hai số học của số không âm a
B) số a có hai căn bậc hai là và
C) một trong hai câu A và B là sai
D) có ít nhất một trong hai câu a và B la câu đúng
• Qua bài học sinh nắm được:
• Cách tìm điều kiện xác định (hay đièu kiện có nghĩa) của A và có kỹ năng vận dụng đểtìm điều kiện của một số căn thức đơn giản
• Biết chứng minh định lý: a2 = a và vận dụng hằng đẳng thức
2
A = A đểû rút gọn biểuthức
Trang 3B CHUẨN BỊ Học sinh ôn lại cacùh tìm tập xác định của phân thức đại
số
C.CÁC HOẠT ĐỘNG DẠY HỌC
1)Kiểm tra: (7phút)
H.Nêu định nghĩa cbhsh của số dương a?Tìm cbh của các số:81 ; 1,21 ;
225 từ đó suy ra cbhsh của chúng
H.Phát biểu định lý về so sánh các căn bậc hai.Giải bài tập 2
2)Bài mới: (30Phút )
Gv giới thiệu ?1 Hs suy nghĩ trả
Gv đưa đến tổng quát
A có nghĩa khi nào?
HS đọc ví dụ 2; GV hướng dẫn
HS giải bài tập 6/10 sgk HS đứng
tại chỗ trảlời
?3Hs làm trên bảng phụ
GV lưu ý:Khi bình phương một số
rồi mới khai phươngthì không phải
lúc nào cũng được lại số đầu
Gv hướng dẫn hs giả vd 2a và vd
3b
Hs giải vd còn lại
1)Căn thức bậc hai (12phút) ?1.Gọi 25 x− 2 là căn thức bậc hai của 25-x2, còn 25-x2 là biểu thức lấy căn
Tổng quát (sgk)
Acó nghĩa ⇔A≥0
Ví dụ 1 sgk
?2 5 2x− xác định khi 5-2x ≥0 hay x ≤52
2)Hằng đẳng thức A= A (18
phút)
?3 Điền bảng sgk Định lý: Với mọi số a,ta có
Trang 4GV nêu chú ý.
H.Aùp dụng giải vd 4
GV lưu ý HS trước khi bỏ gttđ cần
xét xem biểu thức trong trị tuyệt
đối có giá trị âm hay dương để đưa
ra kết quả hợp lý
Vdụ4 Rút gọn
a) ( )2
2
x− = x− 2=x-2(vì x≥ 0)b) 6 ( )3 2 3 3
a = a = a = −a
(vì a< 0 nên –a3< 0)
3) Củng cố: ( 6phút)
Khoanh tròn chữ cái đứng trước kết quả đúng
Học sinh giải bài tập 7 a,7b ; 8a,b (theo hai nhóm)
4)Hướng dẫn về nhà: (2 phút)
Làm các bài tập còn lại
Hướng dẫn bài 10b: Đưa biểu thức dưới dấu căn vể dạng bình phương một hiệu
Trang 5• Biêát áp dụng hằng đẳng thức trong bài để rút gọn biểu thức
• Học sinh được luyện tập về phép khai phương để tính giá trị của
biểu thức số, phân tích đa thức thành nhân tử, giải phương trình B.CHUẨN BỊ
• GV :bảng phụ
• HS ôn lại hằng đẳng thức đáng nhớ, cách biểu diễn ngiệm của
phương trình bậc hai trên trục số
C.Các hoạt đôïng dạy học
1)Kiểm tra (10 phút)
HS 1 Nêu đk để Acó nghĩa ?-sửa bài tập 12 a;b Đáp số: a) x≥ −72 b) x4
2)Bài mới: (30 phút)
Hoạt động của giáo viên
và học sinh
Nội dung
2 HS giải câu a;b
2 HS tiếp theo giải câu c;d
GV Yêu cầu HS cho biết thứ
tự thực hiện phép tính và
hướng giải trước khi làm
GV:Hướng dẫn HS làm bài
c từ trong ra
2 HS lên bảng giảicâu c; d
bài 12
GV :Ở câu c căn có nghĩa
khi nào? Tử là số dương thì
phân thức có giá trị dương
d) 3 2 + 4 2 = 9 16 + = 25 5 =
Bài 12/11(sgk):Tìm x để mỗi căn sau có
nghĩac) − +1 x1 có nghĩa khi
Trang 6GV:Ở câu d biểu thức trong
căn có gì đặc biệt?
GV yêu cầu HS đọc đề suy
nghĩ tìm hướng giải
H Cần vận dụng kiến thức
nào để rút gọn
HS hoạt đôïng nhóm mỗi
nhóm giải một câu của bài
13 lên bảng phụ
GV cùng HS nhận xét kết
quả của mỗi nhóm
HS đứng tại chỗ trả lời bài
H.Theo định nghĩa số 3 có
thể viết dưới dạng nào?
H Nêu cách giải phương
trình ở bài 15
H.Có thể vận dụng được
điều gì ở bài 13 không
HS tiếp tục hoạt động nhóm
để giải bài 15
GV : Dựa vào bài 14 để đưa
vế trái thành dạng tích sau
25a + 3a = 5a + 3a=5a+3a=8a (Vì a≥0 nên 5a≥ 0)
x − x+ = −x
Bài 15/11 (sgk ):Giải phương trình
a) x2-5 = 0 ⇔ (x− 5 ) (x+ 5)= 0 ⇔ (x− 5)= 0 hoặc (x+ 5)= 0 ⇔ x= 5 hoặc x= − 5
Vậy phương trình có hai là x1,2=± 5
2
2 2
3) Củng cố: (3 phút)
GV tổng kết phương pháp thông thường, kiến thức cần vận dụng để giải các dạng toán đã giải trong bài
4) Hướng dẫn học ở nhà: (2 phút)
Giải các bài tập:14b;c 16 sgk
14; 15 sbt
Trang 7C.CÁC HOẠT ĐỘNG DẠY HỌC
1)Kiểm tra (5 phút)
HS 1:Nêu điều kiện để Acó nghĩa- Tìm đk để các căn sau có nghĩa
2)Bài mới(30 phút)
GV đặt vấn đề vào bài
HS làm ?1
GV đưa nội dung định lý
GV hướng dẫn chứng minh
H để chứng minh a b. là kq phép
khai phương a.b ta phải chứng
Định lý trên được cm trên cơ sở
nào? Hãy nhắc lại công thức định
a b = a b.
Chứng minh:sgk Chú ý: Định lý trên có thể mở rộng cho tích của nhiều số không âm
2 Aùp dụng: (20 phút)
a) Quy tắc khai phương một tích
( sgk )
Ví dụ1 sgk
Trang 8H Theo chieău traiù sang phại haõy
phaùt bieơu quy taíc khai phöông moôt
tích?
GV höôùng daên HS laøm ví dú 1a
Moôt HS leđn bạng laøm vd 1b
GV gôïi yù: 810=81.10 ; 40=4.10
810.40=81.400
?2 HS chia nhoùm ñeơ giại
Nöûa lôùp laøm cađu a
Nöûa lôùp laøm cađu b
Nhaôn xeùt caùc nhoùm laøm baøi
Theo chieău töø traùi sang phại cụa
cođng thöùc ñlyù haõy phaùt bieơu quy taĩc
nhađn caùc caín baôc hai
HS nghieđn cöùu ví dú 2
2 HS ñöùng tái choê trình baøy baøi
giại sau khi ñaõ nghieđn cöùu lôøi giại
sgk
GV ÔÛ ví dú b neđn bieân ñoơi bieơu
thöùc veă dáng tích caùc bình phöông
roăi thöïc hieôn pheùp tính
HS laøm ?3 tređn phieâu hóc taôp
GV thu moôt soâ phieẫu ñeơ kieơm
tra,ñoăng thôøi yeđu caău haihóc sinh
leđn bạng trình baøi lái baøi giại cụa
mình
HS coù theơ laøm caùc caùch khaùc
nhau,nhöng phại hôïp lyù vaø cho keât
quạ ñuùng
2 HS leđn bạng laøm ?4
GV yeđu caău HS trình baøy caùch giại
khaùc neâu coù
?2 Tính
a) 0,16.0,64.225= 0,16 0,64 225
=0,4.0,8.15=4,8 b)
250.360 25.10.36.1025.36.100 25 36 100 5.6.10 300
( )2
2
A = A = A
Ví dú 3 (sgk )
?4 Ruùt gón caùc bieơu thöùc sau (vôùi a
vaø b khođng ađm) a)
3 12a a = 3 12a a = 36a = 6a = 6a
b) 2 32a ab2 = 64a b2 2 = 8ab = 8ab (vì a≥ 0;b≥ ⇒ 0 ab≥ 0)
Trang 93) Củng cố: (8phút)
*) Khoanh tròn chữ cái đứng trước kết quả đúng
a)Khai phương tích 12.30.40 được A 1200 B 120 C
C CÁC HOẠT ĐỘNG DẠY HỌC
1) Kiểm tra (kết hợp trong giờ)
2)Bài mới
Hoạt động của giáo viên và học
sinh
Nội dung
HS1: Phát biểu định lí liên hệ giữa
phép nhân và khai phương và sửa
bài tập
17 a, d ; 18 b d
HS2:Phát biểu quy tắc khai phương
một tích và quy tắc nhân các căn
bậc hai và sửa bài tập 19b, d
A.Kiểm tra và sửa bài tập
(20phút)
Bài 17/14 (sgk) Vận dụng quy tắc
khai phương môït tích,hãy tínha) 0,09.64 = 0,09 64 0,3.8 2, 4 = =
d) 2 4 ( )2 2 2
2 3 = 2.3 = 2.3 = 18
Bài 18/14 (sgk) Aùp dụng quy tắc
Trang 10HS3: giải bài tập19a,b
Học sinh lớp nhận xét bài giải
GV:
Nhận xét, giảng giải cách làm:
Bài 17 và 18 chú ý thể hiện việc
vận dụng quy tắc, biến đổi biểu
thức dưới dấu căn về dạng tích các
số chính phương hặc số bằng bình
phương đúng của một số ( so ácó căn
đúng),luyện kỹ năng tính nhẩm,
hạn chế dùng máy tính trong
những bài này
Bài 19 Lưu ý điều kiện của a ,b để
xét xem biểu thức trong gttđ âm
hay dương,từ đó viết đúng kết quả
khi bỏ gttđ
GV đánh giá sửa sai (nếu có)và cho
điểm
GV kết hợp hỏi HS để sửa bài 20
H Trong bài b bài cho a>0 nên ta
suy ra điều gì? A có thể bằng 0 hay
nhỏ hơn 0 được không?
H Ở bài d cần xét mấy trường hợp?
khi a không âm ta có kết quả như
thế nào?
Khi a nhỏ hơn không ta có kết quả
như thế nào?
Phần luyện tập
Hsinh cả lớp cùng suy nghĩ giải
bài22
H Có nhận xét gì về biểu thức dưới
dấu căn?Hãy biến đổi về hằng đẳng
( ) ( )
( vì a>b nên a-b>0)
Bài 20/15 (sgk) Rút gọn
= 9 -6a +a2 +6a =9 +a2 ( nếu a<0 )
B Luyện tập (20phút)
Dạng1:Tính giá trị của biểu thức
Trang 11Hai học sinh lên bảng giải
GV gọi học sinh nhận xét bài giải
và kiểm tra các phép biến đổi
Học sinh giải bài 24 dưới sự hướng
dẫn của giáo viên
Bài 24b giải tương tự
HS đứng tại chỗ trả lời bài giải bài
23 a từ đó định hướng giải bài 23b
H Thế nào là hai số nghịch đảo
của nhau
H Để chứng minh ( 2006 − 2005)và
( 2006 + 2005)là hai số nghịch đảo
của nhau ta phải chứng minh điều
gì?
H Để tìm x ta phải làm thế nào?
Làm thế nào để đưa x đứng ra
ngoài căn?
HS hoạt động nhóm để giải bài 25d
Đại diện hainhóm trình bày bài
giải
GV nhận xét bài giải của các nhóm,
uốn nắn,sửa chữa những sai
sót,giảng giải cách giải phương
Bài 24/15 (sgk) Rút gọn và tìm giá
trị của các căn thức sau
2 1 3 + − 2 =2 1 3 2− 21,029
Dạng 2: Chứng minh Bài23/15 (sgk) Chứng minh
( 2006 − 2005) và( 2006 + 2005)là hai số nghịch đảo
Trang 123) Củng cố (3 phút)
Gviên tổng kết phương pháp giải các dạng bài tập trên,rút kinh nghiệm với những sai sót thường mắc khi giải những dạng này
4) Hướng dẫn về nhà
Xem lại các bài tập đã giải
Làm các bài tập còn lại trong sách giáo khoa
Tuần 2
I-MỤC TIÊU: Qua bài này HS nắm được:
1) Nắm được nội dung và cách chứng minh định lý về liên hệ giữa phép chia và phép khai phương.
2) HS có kỹ năng về quy tắc khai phương của một thương và chia các căn bậc hai trong tính toán và biến đổi biểu thức
II/ CHUẨN BỊ:
HS : Bảng phụ nhóm, bút dạ.
III/ LÊN LỚP:
1/Kiểm tra: (7 phút)GV nêu yêu cầu kiểm tra.(Gọi 2 HS đồng thời lên bảng
chữa bài tập)
HS 1: Chữa bài tập: 25 b và c trang 16 SGK.
2/ Bài mới: (32 phút)
HOẠT ĐỘNG CỦA THẦY VÀ TRÒ NỘI DUNG
-GV : cho HS đọc nội dung ?1 trang
16 SGK và cho các em tự lực làm bài
Sau đó 1 HS lên bảng trình bày bài
làm.
+HS : 16 16 ( 4)
25 = 25 = 5
-GV: khái quát ?1 thành liên hệ
giữa phép chia và phép khai phương.
-Gọi 1 HS phát biểu định lý Sau đó
GV hướng dẫn HS chứng minh định
1/ Định lý:
?1 (SGK) Định lý:
Với a là số không âm và b là số dương, ta có
a a
b = bChứng minh : SGK
Trang 13-Hướng dẫn:Theo định nghĩa căn bậc
hai số học, để chứng minh a
b là căn bậc hai số học của a b thì ta phải
chứng minh điều gì ? GV : +Em hãy
-Hãy so sánh điều kiêïn của a và b
trong hai định lý và giải thích điều
đó.
GV : từ định lý trên ta có hai quy
tắc: quy tắc khai phương một thương
và quy tắc chia các căn thức bậc hai:
-GV giới thiệu quy tắc khai phương
một thương và hướng dẫn các em
-GV tổ chức cho HS hoạt động nhóm
làm ?2 để củng cố quy tắc trên.
-HS chia nhóm làm ?2 Sau đó đại
diện hai nhóm lên bảng chữa bài.
-GV hướng dẫn HS quy tắc quy tắc
chia các căn thức bậc hai và hướng
dẫn các em làm ví dụ 2.
- GV trình bày ví dụ 2 lên bảng HS
theo dõi.
-HS chia nhóm làm ?3 Sau đó đại
diện hai nhóm lên bảng chữa bài.
Trang 14-GV: chữa bài cho HS.
-GV trình bày phần chú ý và cho HS
đọc ví dụ 3 theo SGK.Sau đó GV
trình bày lại để HS theo dõi.
HS : Tự lực làm ?4, GV hướng dẫn
HS yếu làm Sau đó gọi 2 HS lên
bảng trình bày.
-HS cả lớp nhận xét bài giải của bạn,
GV nhận xét đánh giá.
b a ab
≥ 0)
3/ Củng cố: (3 phút)
+HS phát biểu các vừa học.
+Làm các tập: 28b,d ( HS tự lực giải, lên bảng trình bày, GV sửa sai cho HS)
3/ Hướng dẫn về nhà:(2 phút)
1 Học bài thật kỹ (định lý, chứng minh định lý, các quy tắc)
2 Làm các bài tập 28 a,c ; 29a, b, c ; 30c, d và 31 trang 18, 19 SGK
3 Chuẩn bị tiết sau luyện tập.
• HS được rèn luyện thành thạo các kỹ năng tư duy như tính nhẩm, tính nhanh, chứng minh, rút gọn, tìm x.
B CHUẨN BỊ:
GV: Nghiên cứu các dạng bài tập trong SGK.
HS : Bảng phụ nhóm, bút dạ.
C CÁC HOẠT ĐỘNG DẠY HỌC
1/Kiểm tra: (10 phút) GV nêu yêu cầu kiểm tra.(gọi 2 HS lên bảng trả lời)
HS 1: * Phát biểu định lý liên hệ giữa phép chia và phép khai phương.
* Giải bài 28a,29c
Trang 15HS 2: * Phát biểu quy tắc khai phương một thương và quy tắc chia các căn
thức bậc hai.
* Chữa bài tập trang 15 SGK.
GV chữa bài và đánh giá.
2/ Luyện tập: (30 phút)
Các bài 28a, 29b, 30 a,d thực hiện
kết hợp trong kiểm tra đầu giờ
HS đứngùng tại chỗ trả lời đáp số
bài30b,c
Bài 31 (GV sửa,kết hợp hỏi học sinh)
26 16 − = 9 3 = ≠ 25 − 16 5 4 1 = − =
b) Hướng dẫn học sinh đi so sánh
các bình phương của chúng
-Gọi 2 HS lên bảng đồng thời chữa
bài 32 a,d.
a) Hãy nêu cách giải câu a.
Gọi 1 HS lên bảng trình bày Cả lớp
tự làm vào vở bài tập.
-GV nêu đề bài tập 32d.
-GV Em có nhận xét gì về tử và mẫu
của biểu thức lấy căn?
-GV hãy vận dụng hằng đẳng thức đó
để tính.
+Gọi 1 HS lên bảng trình bày.
GV đưa bài tập 36 ( viết sẵn vào
bảng phụ) Yêu cầu HS đứng tại chỗ
lượng gần đúng giá trị 39
d) Đúng do chia hai vế của bất
phương trình cho cùng một số dương và không đổi chiều của bất phương
Trang 163x+ 3 = 12 + 27
Nhận xét: 12 = 4.3
27 = 9.3
Hãy áp dụng quy tắc khai phương
một tích để biến đổi phương trình.
c) Giải phương trình:
2
3x = 12
-GV Với phương trình này ta giải
như thế nào? Em hãy giải phương
trình đó.
-Gọi HS lên bảng trình bày.
-GV nêu đề bài tập 35a SGK:
Tìm x biết: (x− 3) 2 = 9
-GV : hãy áp dụng hằng đẳng thức:
2
A = A để biến đổi phương trình.
-GV nêu đề bài tập 34 a.
+Tổ chức HS hoạt động nhóm sau đó
GV nhận xét và chữa bài trên bảng.
Bài tập 34c tiến hành tương tự như
trên.
GV nhận xét các nhóm làm bài và
khẳng định lại các quy tắc khai
phương một thương và hằng đẳng
thức A2 = A .
3) Củng cố: Kết hợp trong giờ
Cuối cùng GV nhắc lại cách giải
từng loại toán trên, lưu ý những
sai sót học sinh thường mắc phải(3
Dạng3: Rút gọn biểu thức:
(Vì a ≥ -1,5 ⇒ 2a+3 ≥ 0 và b < 0)
4)Hướng dẫn về nhà: ( 2 phút)
4 Xem lại các bài tập đã học tại lớp.
5 làm các bài tâïp 32b,c ; 33a,d ;34 b,d; 35b và 37 trang 19-20 SGK.
6 GVhướng dẫn HS giải bà tập 37.HS về nhà nghiên cứu trước bài”Bảng căn bậc hai” và tiết sau chuẩn bị bảng số V.M Brađixơ và máy tính bỏ túi (nếu có).
Trang 17Tuần 4
I-MỤC TIÊU:
1) Hoc sinh hiểu được cấu tạo của căn bậc hai.
2) HS được rèn luyện thành thạo kỹ năng tra bảng để tìm căn bậc hai của một số không âm.
II/ CHUẨN BỊ:
GV: Bảng số, êke, tấm bìa cứng chữ L.
HS : Bảng phụ nhóm, bút dạ Bảng số, êke, tấm bìa cứng chữ L.
III/ LÊN LỚP:
1/Kiểm tra: (7 phút) GV nêu yêu cầu kiểm tra.(gọi 1 HS lên bảng trả lời)
HS 1: Chữa bài tập 35b SGK.
Giải: Đưa về dạng: 2x+ = 1 6
Giải ra ta được: x 1 = 2,5 ; x 2 = -3,5
GV chữa bài và đánh giá.
2/ Bài mới: (30 phút)
GV:Để tìm các căn bậc hai của một số
dương’ người ta có thể sử dụng bảng tính
sẵn các căn bậc hai Trong cuốn” Bảng
số với 4 chữ số thập phân cảu
Brađi-xơ”Bảng căn bậc hai là bảng IV dùng để
khai cănbất kỳ số dương nào có nhiều
nhất 4 chữ số
-Cho HS mở bảng IV căn bậc hai để biết
về cấu tạo của bảng
-GV giới thiệu cấu tạo của bảng:
+Bảng căn bậc hai được chia thành các
hàng và các cột, ngoài ra còn 9 cột hiệu
chính
+Ta quy ước gọi tên của các hàng (cột)
theo số được ghi ở cột đầu tiên ( hàng
đầu tiên) ở mỗi trang
+Căn bậc hai của các số được viết bởi
không quá ba chữ số từ 1,00 đến 99,9
+Chín cột hiệu chính được dùng để hiệu
chính chữ số cuối của căn bậc hai từ
I/ Giới thiệu bảng:
II/ Cách dùng bảng : a) Tìm căn bậc hai của số lớn hơn 1 và bé hơn 100.
Ví dụ 1 : Tìm 1,68
Trang 181,000 đến 99,99.
a) Tìm căn bậc hai của số lớn hơn 1 và
bé hơn 100
Ví dụ 1 : Tìm 1,68
GV cho HS dùng tấm bìa L hoặc êke để
tìm giao của hành 1,6 và cột 8 sao cho số
1,6 và cột 8 nằm trên hai cạnh góc
vuông.Khi đó số tại đỉnh của góc vuông
là1,296 Vậy 1,68 1, 296 ;
GV cho HS tìm 4,9 và 8, 49
Kết quả: 4,9 2, 214 ;
8, 49 2,914 ;
Cho HS làm ví dụ 2 SGK
-GV: Tìm giao của hàng 39 và cột 1?
-HS: Ta có 39,1 6, 253 ;
-GV: Tại giao của hàng 39 và cột 8 hiệu
chính là số mấy?
-HS: Số 6
-GV: ta dùng số 6 này để hiệu chính chữ
số cuối của 6,253 như sau : 6,253 + 0,006
= 6,259
Vậy 39,18 6, 259 ;
+Tương tự em hãy tìm: 9,736; 36, 48;
9,11 và 39,82
GV khẳng định: Bảng căn bâïc hai chỉ
dùng để tính căn bậc hai của các số
dương bé hơn 100 hoặc lớn hơn 1 Do đó
để tính căn bậc hai của các số không âm
lớn hơn 100 hoặc bé hơn 1 ta phải dựa
vào tính chất căn bậc hai
-GV yêu cầu HS làm ví dụ 3
b) Tìm căn bậc hai của số lớn hơn 100.
;
Trang 19-Gọi 1 HS lên bảng trình bày.
-GV cho HS hoạt động nhóm làm ?
2.trang 22 SGK
+Gọi đại diện hai nhóm lên bảng trình
bày bài giải
-GV cho HS đọc ví dụ 4 Sau đó GV trình
bày bài mẫu lên bảng
-GV yêu cầu HS làm ?3
+Dùng bảng căn bậc hai, tìm giá trị gần
đúng của phương trình:x2 = 0,3982
-GV: Em làm thế nào để tìm nghiệm gần
đúng của phương trình
+HS: Tìm 0,3982 0,6311 ;
+Vậy nghiệm của phương trình là:
x1 = 0,6311 ; x2 = - 0,6311
-HS hoạt động nhóm làm bài tập 41
trang 23 SGK để củng cố bài học
Chú ý : SGK
3) Củng cố : (6 phút )
HS làm các bài tập:38, 39 trang 23 SGK
4/ Hướng dẫn về nhà: (2 phút)
7 Học bài để biết khai căn bằng bảng số.
8 Làm các bài tâïp: 40, 42.SGK và 47,48,53, 54 trang 11 SBT.
9 Đọc phần “ Có thể em chưa biết”.
10 Nghiên cứu trước bài”Biến đổi đơn giản biểu thức chứa căn bậc hai”
Tuần 5
Trang 20• Biết vận dụng các phép biến đổi trên để so sánh hai số và rút gọn biểu thức
B.CHUẨN BỊ
GV: Bảng phụ ghi sẵn các kiến thức trọng tâm của bài, các tổng
quát,bảng căn bậc hai
HS: Bảng phụ, bảng căn bậc hai
C CÁC HOẠT ĐỘNG DẠY HỌC
1) Kiểm tra (5 phút)
Biểu diễn trên trục số
2)Bài mới (25 phút)
HS làm ?1
H đẳng thức trên được chứng
minh dựa trên cơ sở nào?
GV: Đẳng thức trên cho phép ta
thực hiện phép biến đổi a b a b2 =
Phép biến đổi này gọi là phép đưa
thừa số ra ngoài dấu căn
H Hãy cho biết thừa số nào được
đưa ra ngoài dấu căn
H Hãy đưa thừa số ra ngoài dấu
căn ( VD1)
GV: Đôi khi phải biến đổi biểu
thức dưới dấu căn về dạng thích
hợp rồi mới thực hiện được phép
đưa thừa số ra ngoài dấua căn
(vd1b)
Gv: Một trong các ứng dụng của
phép đưa thừa số ra ngoài dấu căn
là rút gọn biểu thức chứa căn bậc
Trang 21GV đưa lời giải trên bảng phụ và
chỉ rõ:
3 5; 2 5; 5là các căn đồng dạng với
nhau
HS Hoạt động nhóm để làm ?2
Nửa lớp làm câu a
Nửa lớp làm câu b
GV kết hợp với HS nhận xét kết
quả các nhóm
GV nêu tổng quát trên bảng phụ
GV Hướng dẫn HS làm ví dụ 3a
Một HS lên bảng giải câu b
HS tiếp tục giải ?3
Hai HS lên bảng trình bày
HS khác nhận xét
GV nhận xét, giảng giải
GV quay lại phép toán:
20 = 4.5 2 5 = theo chiều phải
sang trái ta có phép biến đổi nào?
GV giới thiệu phép đưa thừa số ra
ngoài dấu căn có phép biến đổi
ngược là phép đưa thừa số vào
trong dấu căn
GV nêu tổng quát trên bảng phụ
HS nghiên cứu lời giải ví dụ 4
trong sgk
H.Để đưa một thừa sôù vào trong
dấu căn ta đã làm như thế nào?
Chỉ những thừa số như thế nào
mới đưa vào trong căn
GV lưu ý:Trong ví dụ 4b và d ta chỉ
đưa số dương vào trong căn sau khi
đã nâng lên luỹ thừa bậc hai
HS chia nhóm để giải ?4
Hai HS đại diện lên trình bày
GV nhận xét các nhóm giải
GV:Đưa thừa số vào trong dấu căn
2 2
Trang 22( hoặc ra ngoài dấu căn) có tác
dụng:
- So sánh các số được thuận tiện
- Tính giá trị gần đúng các biểu
thức số với độ chính xác cao
GV nêu ví dụ 5: So sánh 3 7 với
28
H Để so sánh hai số trên em làm
thế nào?
H Có thể có cách giải khác?
Hai học sinh lên bảng giải theo
hai cách
GV kết hợp với HS để nhận xét
bài giải
Ví dụ 5 (sgk)
3) Củng cố (12 phút)
HS giải bài 43 d, e ( hai HS đồng thời lên bảng )
và 44 sgk trang 27 ( ba HS đồng thời lên bảng )
4) Hướng dẫn về nhà ( 3 phút)
Xem kĩ các ví dụ đã giải trong bài học để làm bài tập ở nhà
Làm các bài tập: 45,46,47 sgk /27
• Học sinh có kĩ năng thành thạo trong việc phối hợp và sử dụng các phép biến đổi trên
Trang 23a) Đưa thừa số ra ngoài dấu căn:
b) Đưa thừa số vào trong dấu căn
2)Bài mới (33’)
Chữa bài tập số 43 d,e
Yêu cầu 2 học sinh lên bảng thực
hiện Học sinh dưới lớp cùng theo
dõi
Giáo viên cho học sinh dưới lớp
nhận xét, giáo viên cho điểm
Chữa bài tập số 44
Giáo viên ghi đề bài lên bảng:
Yêu cầu ba học sinh đồng thời lên
bảng cùng thực hiện Học sinh dưới
lớp cùng thực hiện
Giáo viên nhận xét bài và cho
điểm Chú ý nhắc nhở các lỗi sai
của các em
A Sửa bài tập
BT 43(d,e)
Bài giảid) − 0,05 28800 0,05 288.100 0,5.12 2
Với x 0 > thì 2x có nghĩa
Bt 46: Rút gọn các biểu thức sau vớix 0 ≥
Trang 24Chữa bài tập số 46
Cả lớp cùng chuẩn bị Sau đó giáo
viên gọi hai học sinh lần lượt đứng
tại chỗ trình bày lời giải của mình,
giáo viên ghi bảng
Giáo viên nhận xét sửa sai Yêu
cầu các học sinh khác sửa lại
a) Với x 0 ≥ thì 3x có nghĩa
Nhắc lại cách giải chung đối với các dạng toán đã giải trong bài
4) Hướng dẫn về nhà ( 2’)
Đọc trước bài ”Rút gọn biểu thức chứa căn bậc hai” Làm các bài còn lại trong sgk
Tuần 6
C CÁC HOẠT ĐỘNG DẠY HỌC
1) Kiểm tra (8 phút)
HS1:Sửa bài 45a,c
Trang 252 3 1
H Để khử mẫu của biểu thức trong
căn ta đã làm như thế nào?
H Chọn thừa số nhân thêm phải thoả
mãn điều gì?
GV lưu ý: Nhân thêm cả tử và mẫu
Thừa số nhân thêm
phải đưa mãu về dạng bình phương
hoặc luỹ thừa bậc chẵn của một số
hoặc của một biểu thức
H Hãy nhắc lại cách làm để khử mẫu
của biểu thức lấy căn
GV: Đưa công thức tổng quát
HS làm ?1
Ba HS đồng thời lên bảng trình bày
GV lưu ý:Có khi không nhất thiềt
phải nhân thêm thừa số giống mẫu
mà nên chọn thừa số thích hợp (câu
b)
GV giới thiệu phép trục căn ở mẫu và
đưa vídụ2 yêu cầu học sinh đọc lời
giải
H Trong các ví dụ người ta đã làm
thế nào khi tiến hành trục căn ở mãu
1 Khử mẫu của biểu thức lấy căn
Ví dụ1: Khử mẫu của biểu thức
lấy căn
3 = 3 = 3b) ( )2
3.Trục căn ở mẫu
Ví dụ2: Trục căn thức ở mẫu Giải: (sgk)
Tổng quát (sgk)
Trang 26H Trong ví dụ a) nhân cả tử và mẫu
với bao nhiêu?
Hỏi tương tự với các câu b và c
H các biểu thức nhân thêm có đặc
diểm gì?
H Trường hợp nhân thêm ở câu b,c
có giống với trường hợp ở câu a
GV gới thiệu :Biểu thức liên hợp
GV phân tích để HS nắm được
trường hợp nào thì nhân thêm căn
giống mẫu (hoặc căn thích hợp),
trường hợp nào thì nhân thêm biểu
thức liên hợp
GV nêu tổng quát trên bảng phụ
H cho biết biểu thức liên hợp của
A B+ A B− A+ B A+ B
HS hoạt động nhóm để giải ?2
Chia lớp thanh 3 nhóm mỗi nhóm
làm một câu
Đại diện 3 nhóm trình bày
GV kiểm tra kết quả và đánh giá
?2 Trục căn ở mẫu
a) 5 5 2 5 2 5 ; 2 2
3.4 12
3 8 3 16
b b b
(b>0)b)
6 2 6
4 2
a a b a
3) Củng cố (8Phút)
HS làm bài tập 48 /29/sgk
*) Các kết quả sau đúng hay sai nếu sai hãy sửa lại cho đúng
p p
Trang 274) Hướng dẫn về nhà( 2 phút )
Ôn laị cách khử mẫu của biểu thức lấy căn và trục căn ở mẫu
Làm các bài tập từ 49 đến 52 SGK
Tiết sau :Luyện tập
• Học sinh có kĩ năng thành thạo trong việc phối hợp và sử dụng các phép biến đổi trên
Hai HS đồng thời lên bảng
HS1:Khử mẫu của biểu thức lấy căn: a) 2
Hsinh lớp nhận xét
GV giảng giải đánh giá, lưu ý
học sinh chú ý điều kiện của a
để xét giá trị của biểu thức
A Sửa bài tập
Bài46b/27 (sgk) :Rút gọn biểu thức sau
Trang 28trong GTTĐ
B.
Học sinh cả lớp cùng suy nghĩ
làm bài
GV hỏi: Với bài này phải sử
dụng kiến thức nào?
HS1 lên bảng trình bày bài
a,d
HS2 đúng tại chỗ trình bày
bài b
HS3 lên bảng trình bày bài d
GV có thể nêu câu hỏi gợi ý:
H Trong bài b trước tiên ta
phải làm gì?
H Sau khi quy đồng ta thấy
trong căn xuất hiện biểu thức
nào có thể đưa ra ngoài dáu
căn?
H Có thể giải rõ hai trường
hợp như thế nào? ( học sinh
yếu có thể bỏ qua bước này)
H.Trong bài d để rút gọn được
ta cần làm gì? Tử thức ta có
thể phân tích được như thế
Dạng 1: Rút gọn biểu thức (giả thiết
các biểu thức chữ đều có nghĩa
−
( các bài khác làm tương tự )
Dạng 2: Phân tích thành nhân tử Bài 55 /30 (sgk)
Kết quả:
a) 2 6 < 29<4 2<3 5b) 38 2 14 3 7 6 2 < < <
Trang 29HS giải trên phiếu học tập hai
bài 56 và 57
Gv yêu cầu học sinh nêu
hướng giải từng bài sau đó
phát phiếu học tập
Phiếu chẵn gồm bài 56a và 57
Phiếu lẻ gồm bài 56b và bài
57
GV chuẩn bị phiếu học tập in
sẵn
Gviên chấm tại chỗ một số
phiếu, nhận xét và hướng dẫn
lại cách giải
Nhắc lại cách giải chung đối với các dạng toán đã giải trong bài
4) Hướng dẫn về nhà ( 2’)
Đọc trước bài” Rút gọn biểu thức chứa căn bậc hai”
Làm các bài còn lại trong sgk
GV:Bảng phụ ghi câu hỏi, bài tập
HS: - Ôn tập các phép biến đổi biểu thức chứa căn thức bậc hai
- Bảng phụ nhóm
b) CÁC HOẠT ĐÔÏNG DẠY HỌC
1)Kiểm tra (8 phút)
Trang 30HS1: Sữa bài tập 58sgk/32
Rút gọn biểu thức
HS2: Sữa bài tập 62sgk/33
Rút gọn biểu thức
=
2)Bài mới:
HS: làm bài tập 62 sgk/33
GV: Muốn rút gọn biểu thức trên ta
làm như thế nào?
HS: - Đưa thừa số ra ngoài dấu căn
- Chia hai căn thức bậc hai
- Khử mẫu của biểu thức lấy căn
- Rút gọn các căn thức đồng
dạng
HS: Lên bảng thực hiện
HS: Nhận xét
GV: Muốn rút gọn biểu thức trên ta
làm như thế nào?
HS: - Đưa thừa số ra ngoài dấu căn
- Nhân hai căn thức bậc hai
- Khử mẫu của biểu thức lấy căn
- Rút gọn các căn thức đồng
3 17
3 3
Trang 31HS: Lên bảng thực hiện.
HS: Nhận xét
GV:Muốn chứng minh đẳng thức
A = B ta làm ntn?
HS: Biến đổi A thành B hoặc B
thành A Thông thường biến đổi vế
phức tạp thành vế đơn giản
GV: Vế trái đẳng thức có dạng hằng
đẳng thức nào?
GV: Hãy biến đổi vế trái đẳng thức
sao cho bằng vế phải
HS: lên bảng thực hiện.Cả lớp làm
bài vào vở
GV: Treo bảng phụ ghi bài 65 sgk/34
GV: - Rút gon M
- So sánh M với 1
+ Để so sánh M với 1 ta xét
hiệu M – 1
HS: Lên bảng Rút gọn M
GV: vừa hướng dẫn vừa làm
2 ) 150 1,6 60 4,5 2 6
1 1
1 1
1 1
.
1 1
1
a M
a a
a a
a
a a a a
Trang 32HS: Hoạt động nhóm Bài 66sgk/34
Đại diện nhóm đứng tại chỗ trình
bày các nhó khác nhận xét
HS:Câu đúng D
hay M – 1 < 0 ⇒M < 1
3) Củng cố: ( từng phần)
4) Hướng dẫn học ở nhà
• Biết được một số tính chất của căn bậc ba
• HS được giới thiệu cách tìm căn bậc ba nhờ bảng số và máy tính
B.CHUẨN BỊ
GV Bảng phụ, máy tính, bảng số
HS: bảng số, máy tính, ôn tập tính chất căn bậc hai
C CÁC HOẠT ĐỘNG DẠY HỌC
Hoạt động của GV và HS Nội dung
HS đọc đề toán và tóm tắt đề
H.Thể tích hình lập phương được tính
theo công thức nào?
GV hướng dẫn HS lập phương trình
và giải phương trình sau đó gới
thiệu căn bậc ba của 64
H Vậy một số là căn bậc 3 của một
số a là một sỗ x như thế nào?
1 Khái niệm căn bậc ba
Bài toán: Thùng hình lập phương
Trang 33H Hãy tìm căn bậc ba của 8, -1,
-125
H Với a>0, a<0, a=0 mỗi số a có
bao nhiêu căn bậc 3
GV nhấn mạnh sự khác nhau giữa
căn bậc ba và căn bậc hai, giơiù thiêu
kí hiệu căn bậc ba
HS giải VD1 theo bài mẫu
1HS lên bảng giải
H Qua ví dụ1 có nhận xét gì ?
GV giới thiệu các tính chất của căn
bậc ba thông qua việc nhắc lại tính
chất của căn bậc hai
GV giới thiệu các ứng dụng của các
tính chất căn bậc ba
HS đọc VD2, VD3 và 2HS ø lên
bảng trình bày
HS cả lớp giải ?2 theo 2 cách
GV kết hợp hướng dẫn HS cách
dùng bảng , dùng máy tính để tìm
căn bậc ba của một số, từ đó có thể
tính căn bậc ba của 1728
Ví dụ 2 là căn bậc 3 của 8
-5 là căn bậc ba của -125
* Mỗi số a đều có duy nhất một căn bậc ba
HS giải bài tập 76, 68 SGK
4) Hướng dẫn về nhà(2’)
HS làm 5 câu hỏi ôn tập
Giải các bài tập 70,71,72 SGK
đa thức thành nhân tử, giải phương trình
+ Ôn lý thuyết 3 câu đầu và các công thức biến đổi căn thức
B.CHUẨN BỊ
GV: Bảng phụ ghi bài tập, câu hỏi, một vài bài giải mẫu
Máy tính bỏ túiHS: Ôn tập chương I, làm câu hỏi ôn tập và bài tập ôn tập chương.Bảng phụ nhóm
Trang 34C.CÁC HOẠT ĐÔÏNG DẠY HỌC
1) Kiểm tra ( Kết hợp trong giờ)
2)Bài mới:
HS1: - Nêu điều kiện để x là CBHSH của số
a không âm Cho ví dụ?
Bài tập trắc nghiệm: ( bảng phụ)
a)Nếu CBHSH của một số là 8 thì số đó là:
A 2 2; B 8; C 64 (ĐS: B 8 )
b) a = − 4 thì a bằng:
A 16 ; B –16 ; C Không có số nào
(ĐS: Kông có số nào)
HS2: Trả lời câu 2 và Sửa bài71(b) sgk/40
HS3: A xác định khi nào?
-Bài tập trắc nghiệm: ( bảng phụ)
a) Biểu thức 2 3x− xác định khi:
căn thức” lên bảng, yêu câu HS giải thích mỗi
công thức đó thể hiện định lý nào của CBH
HS: Làm Bài 70 (c,d) sgk/40
GV: Muốn rút gọn biểu thức ta làm thế nào?
HS: Dùng các phép biến đổi: Nhân, chia hai
căn thức bậc hai, rút gọn rồi khai phương
HS: Dùng các phép biến đổi: Nhân hai căn
thức bậc hai, rút gọn rồi khai phương
HS: Lên bảng trình bày
GV Hứơng dẫn cả lớp làm bài71(a,c)
GV: Ta thực hiện phép tính trên theo thứ tự
I ÔN TẬP LÍ THUYẾT VÀ BÀI TẬP TRẮC NGHIỆM (12’)
a = a với mọi sốa (SGK trang 9)
3) A xác định ⇔ ≥A 0
B Bài tập trắc nghiệm
Giải trên bảng phụ
II LUYỆN TẬP (30’)
Bài 70 sgk/40
640 34,3 640.3, 43 64.343 )
567 64.49 8.7 56
Trang 35HS: Nhân phân phối,đưa thừa số ra ngoài dấu
căn, rồi rút gọn.(a)
HS: Khử mẫu biểu thức lấy căn, đưa thừa số
ra ngoài dấu căn, thu gọn trong ngoặc, nhân
Nữa lớp làm câu a, c
Nữa lớp làm câub, d
HS: Hoạt động nhóm,đại diện hai nhóm lên
bảng trình bày
HS: nhận xét
GV: Để tìm x ta làm thế nào?
HS: Khai phương vế trái 2x− = 1 3 sau đó thực
HS: Lên bảng thực hiện
GV: - Tìm điều kiện của x
-Chuyển các hạng tử chứa x về một vế, hạng
tử tự do về phía kia, rút gọn các căn thức đồng
dạng, đưa vềdạng
3) Củng cố: Kết hợp với phần Ôn tập
4) Hướng dẫn học ở nhà (3’)
Ôn tập chương I tiếp theo: Soạn câu hỏi 4;5 và các công thức biến đổi căn thức
- BTVN: 73;75 SGK/40;41; 100;101;105;107 SBT/19
Tuần 9
A.MỤC TIÊU: Qua bài này học sinh cần:
• HS tiếp tục củng cố các kiến thức cơ bản về căn bậc hai, ôn lí thuyết câu 4, 5
• Tiếp tục rèn luyện các kỉ năng về rút gọn biểu thức có chứa căn bậc hai, tìm điều kiện xác định của biểu thức, giải phương trình, giải bất phương trình
Trang 36B CHUẨN BỊ:
• GV: Bảng phụ ghi bài tập, câu hỏi, một số bài giải mẫu
• HS: Ôn tập chương 1 và làm bài tập ôn tập chương, bảng phụ nhóm, bút dạ
C HOẠT ĐỘNG DẠY HỌC
1) Kiểm tra (5’) 1HS giải bài 73a ĐS: -6
2)Bài mới (38’)
ÔN TẬP LÍ THUYẾT VÀ BÀI TẬP TRẮC NGHIỆM (8’)
GV: Nêu câu hỏi kiểm tra.
HS1: Trả lời câu hỏi 4 (sgk)
+ Điền vào chỗ trống (… ) để được khẳng
HS2: Trả lời câu 5 (sgk)
+ Bài tập: Giá trị của biểu thức :
1
2 + 3 - 2−1 3 bằng:
A 4 B - 2 3 C 0
Hãy chọn kết quả đúng
HS nhận xét, GV cho điểm
1 Hs lên bảng giải bài 74
H Hãy trình bày hướng giải
HS cả lớp cùng giảiCâu b nêu hướng giải HS về nhà giải
HS Hoạt đông nhóm giải bài 75
GV: Đưa đề lên bảng phụ,
Nửa lớp làm câu c/
Nửa lớp làm câu d/
GV: kiểm tra hoạt động của các nhóm
HS:(đại diện 2 nhóm lên bảng trình bày)
GV nhận xét đánh giá bài của các nhóm
Câu a;b bài 75 GV kết hợp hỏi Hs tìm
75/ 40 (sgk) Chứng minh các
đẳng thức sauGiảic/ VT = ab a( b)
Trang 37Hoạt động của GV và HS Nội dung
khảo về nhà giải lại
Hs cả lớp suy nghĩ tìm hướng giải bài 76
= ( a + b)( a − b) = a – b, với a, b dương và a ≠ b
thực hiện phép tính trong Q, Thực hiện rút
gọn
GV Lưu ý:
vì a > b > 0 ⇒ a2 > b2 ⇒ a 2 − b 2 > 0
Hướng dẫn HS làm bài tập số 76 sgk
b/ Thay a = 3b vào Q, ta có:
+ Chuẩn bị tiết sau kiểm tra 1 tiết – Chương 1 Đại số
+ Ôn tập các câu hỏi ôn tập chương, các công thức
+ Xem lại các dạng bài tập đã làm (bài tập trắc nghiệm và tự luận)
Trang 38Tuần 9
BÀI 1.(2điểm) Phát biểu quy tắc khai phương một tích
Aùp dụng: Tính
a) 0,25.1,6.810 b) 2 7 4(- )2
BÀI 2 (2điểm) Khoanh tròn chữ cái đứng trước kết quả đúng
a) Biểu thức (2 - 3)2 có giá trị là
a) Rút gọn biểu thức A
b) Tính giá trị của A với x=49
c) Tìm giá trị của x để A =12
Trang 39BÀI 2
a) C -
-0,5đ
b) B - 0,5
c) C
-0,5đ
d) B - 0,5đ
Trang 40x1 1=12
+c)Giải phương trình - x1 1 =12
+ ta có x1 1 =12
+ Û -0,5đ
2 1
Vậy với x=1 thì A =12 -0,5đ
Tuần 10
Tiết 19 Chương II HÀM SỐ BẬC NHẤT
§1 NHẮC LẠI VÀ BỔ SUNG CÁC KHÁI NIỆM VỀ
HÀM SỐ
ND: 15/11/07
A.MỤC TIÊU
Học sinh được ôn lại và phải nắm vững các nội dung:
• Khái niệm về hàm số, biến số, hàm số có thể được cho bằng bảng, bằng công thức
• Khi y là hàm số của x, thì có thể viết y=f(x), y=g(x),… Giá trị của hàm số y=f(x) tại x0, x1,… được kí hiệu là f(x0), f(x1),…
• Đồ thị của hàm số y=f(x) là tập hợp các điểm biểu diễn các cặp giá trị tương ứng (x; f(x)) trên mặt phẳng tọa độ
• Bước đầu nắm được khái niệm hàm số đồng biến , hàm số nghịch biến trên R
Sau khi ôn tập gọc sinh được rèn luyện kĩ năng tính nhanh tính thành thạo các giá trị của hàm số khi cho trước biến số ; biết biểu diễn các cặp giá trị (x,y) trên mặt phẳng tọa độ; biết vẽ thành thạo đồ thị hàm số y=ax
B.CHUẨN BỊ
GV bảng phụ kể sẵn bảng VD1a ?3 và một vài ví dụ khác
HS ôn lại phần hàm số ở lớp 7, máy tính , bảng phụ
C CÁC HOẠT ĐỘNG DẠY HỌC