KIỂM TRA BÀI CŨ • HS1: Vẽ tam giác ABC có một góc vuông.. A C A Các em hãy quan sát các hình vẽ trên và chỉ ra đường cao và cạnh đáy tương ứng trong từng trường hợp?. Vậy muốn tính diện
Trang 1To¸n líp 8
Trang 2KIỂM TRA BÀI CŨ
• HS1: Vẽ tam giác ABC có một góc vuông
• Hs2: Vẽ tam giác ABC có ba góc nhọn
• Hs3 : Vẽ tam giác ABC có một góc tù
A
C
A
Các em hãy quan sát các hình vẽ trên và chỉ ra
đường cao và cạnh đáy tương ứng trong từng trường
hợp ?
Vậy muốn tính diện tích tam giác ta làm
như thế nào ?.
B A
C
Trang 3Định lý
Diện tích tam giác bằng nữa tích
một cạnh với chiều cao ứng với cạnh
đó
ah
S
2
1
h
GT
KL
∆ ABC có diện tích là S
AH ⊥ BC
AH BC
2
1
=
B≡H
A
C
A
A
H C
B
Trang 4SABC=S S
SABH=
SAHC=
Vậy : SABC=
ABH AHC SABC=S S
SABH=
SAHC=
Vậy : SABC=
A
B
A
H C
AH
BH 2
1
AH
HC 2
1
AH HC
BH )
( 2
1 +
AH
BC 2
1
=
AH
BH 2
1
AH
HC 2
1
AH HC
B
H ).
( 2
2
1
=
+
_
Trang 5Có ba trường hợp xảy ra :
a) Trường hợp 1: H trùng với B
B≡H
A
C
∆ABC vuông tai B nên ta có :
AH BC
S
2
1
=
b) Trường hợp 2: H nằm giữa B và C
A
H C
B
c) Trường hợp 3: H nằm ngoài B và C
AHC ABH
2
1
2
=
AH HC
BH )
( 2
2
1
=
AHC ABH
2
1
2
-=
AH HC
BH )
( 2
1
2 1
=
Trang 6Hãy cắt một tam giác thành ba mảnh để ghép lại thành một hình chữ nhật
?
Trường hợp 2:
Trường hợp 1 :
Trang 7Hãy cắt một tam giác thành ba mảnh để ghép lại thành một hình chữ nhật
?
Trường hợp 3 :
Trang 8Bài tập 17/ trang 121 (SGK)
Cho tam giác AOB Vuông tại O Với đường cao OM Hãy giải thích vì sao ta có
đẳng thức sau : AB.OM=OA.OB
Ta có hai cách tính diện tích của tam
giác AOB
O
M
B A
AB.OM=OA.OB
Giải
OM AB
2
1
2 1
=
Trang 9Bài tập 18 Trang 121 (SGK)
Cho tam giác ABC và đường trung tuyến
AM Chứng minh rằng : SAMB=SAMC
Kẻ đường cao AH
Tacó điều gì ?:
M B
A
c
Mà BM=CM (vì M là trung tuyến).
Vậy:
SAMB=SAMC
GT KL
∆ ABC
M ∈ BC;MB=MC
SAMB=SAMC
AH BM
S AMB 2 .
1
=
AH CM
S AMC 2 .
1
=
H
Giải
Trang 10• Ôn công thức tính diện tích hình cn , diện tích hình tam giác
• -Bài tập về nhà : 16;19,21 SGK/ 121 ,122
• 26,27,29 SBT / 129
Trang 11• N¾m v ng qui t¾c céng ph©n thøc ữ
• Đäc tr íc bµi phÐp trõ ph©n thøc
• Lµm c¸c bµi tËp 21 ®Ðn 23 SGK
H íng dÉn bµi 22 SGK
1
2 1
1 1
−
− +
−
+ +
−
−
x
x x
x x
x
x
a)
3
4
5 3
2
2 3
−
− +
−
− +
−
−
x
x x
x
x x
x
b)
Trang 12Bài tập mở rộng (Áp dụng kết quả bài 18 )
Cho tam giác ABC Các điểm M,N,P,Q thuộc đoạn thẳng BC sao cho BM=MN=NP=PQ=QC
Có nhận xét gì về SABM,
SAMN, SANP, SAPQ, SAQC
Tìm hai tam giác có diện tích bằng SABP
A
SABM =SAMN= SANP= SAPQ =SAQC
SABP =SAMQ= SANC