Hay so sanh dien tich tam giac AMN va dien tich hinh chin tren bdi D va phia dudi bdi P... THE TfCH VAT THE TRON XOAY 2... Tinh di?n tich mien D.. Tinh the tich vat the tron xoay dtroc t
Trang 1267
Trang 2531 Tin
h die
n tic
h hin
h than
g con
g gid
i han bdi (C) :
y = xln^x, tru
e hoan
h
va ha
i dudn
g thing
x =
1, x
= e
DH Xdy dung -1997
Gidi
Vi 1
< X
< e => xln^
X
u = h i^
.d
x
dv = x.dx V =
S=
—In
dx
X 2
6^
l)(dvdt)
Gidi
Ta
CO
: S =
X
- (
x + sin x)
1 f"
dx = sin^ xd
x
2 J
(1 cos2x)d
-x = -
X
-sin 2x
h phSn
g gid
i han bdi ca
4 — v
-a y =
4V2
DH khd 'i B
- 2002
Trang 3b ) Tinh the tich vat thi tron xoay k h i quay hinh (D) xung quanh true Ox
DH Nong nghiep Hd Noi - 1999
269
Trang 4SD-
l + x^
2 O
X =
±1
pi r
.2
3, (dvdt)
^ 27
1
(dvtt)
35 Tinh dien tic
h hin
h phan
g (D) gid
e
In
X
1 2
A/^
dx = Vx
^ = V
e-2V
^ ' = (2-
IS SG I
Tinh dien tich hin
h phSng
D )
gidi ha
n bd
i y = (
x + l)'^ v
a y = e
C
O :
f (x) =
5 (x+
1)'- e
=> f(x) >
^dx-eMx =
f69
- e (dvdt)
Tinh dien tich hin
1999
Trang 5Phuong t r i n h hoanh do giao
diem ciia hai dudng
Trang 6Gidi
Trirdc he
x t
ai 4 diem
X =
0,
X =
71, X = 271 , X
- 3n
Nhcf d
o t
hi ta c6 :
•371,
s = sin
r2
sin xdx +
= (-cosx) "
+(cosx) -(
cosx)
=6(dvdt)
2n
sin xdx
3ii 2n
401
Tin
h die
n tic
h hin
h phAn
g gid
i han bdi cac
d iT dn
g :
y = sin I
XI
va
y =
I x I -
: y = si
n I x
sin(-x) =
i be
n canh
Ta tha
y ha
i d
o th
x
X + 7i)
dx = 2
- cos
X + TtX
2
= (
4 + 7i
^)(dvdt)
|54l| Tin
h die
n tic
h hin
h phan
g gid
i han bdi ha
i dudn
g y
^ = x^ - x^ v
c din
h k
hi
Vay MXD : D = 10}
Trang 7DH Qudc gia Ha Npi - 1997 Gidi
Phirong t r i n h hoanh do giao diem :
Trang 8544 Tinh dien tich hin
g d : y
x v
a tru
e hoanh
y = f(x) l
< X <
0
cos
X
neu 0 < x < —
2
Di tha
y f(x ) lie
0
2 + s m
n kin
h R
=
±VR'
VR^
- x
^ v
a y = gu ) =
T^
-(
-V R^
t =
> d
x = Rcostdt
Trang 9s = = 2R2 f2 V l - s i n H c o s t d t = 2R2 f 2 cos^ tdt
2 ~2
275
Trang 10a) Tin
h S khi a
1) sa
o ch
o S dat gi
1998
Gidi
a) Khi
X >
0, a > 1 thi
2 2(
V2
^)
VI Vydy =
3V
I
S = ^(5-3
S„a
x = -
x
6 v
a 2
y = -x^ + 3x +
6
DH Hang hdi -
< => x = -
0
-2 3
Trang 11Xet y = X Inx vdi x > 0
Trang 12d :
y = k(x -
xo ) + y
o
Phifdng trin
P l
a :
X- = k(x
- X
o ) + y
o
o k
-x + kxo -
yo =
0 (*
)
Goi Xi, X2 la nghiem
ciia phiiom
g trin
h (*), t
a c
6 :
S =
x, + X2 = k, P = xi X2 = kx
o
yo
"kx^ = )dx X yo - kxo + (kx - "2 f = : S CO Ta
2 +(
yo-l
o kx
-o) (x
2
-Xi) (
x^
x?
-)
=
- Xi ) 3
k (x
2 +
X i ) +
6 (
y kxg) -
2 (x
g + X
o -kxo)-
2(
S2
P)
-= JV k'
4kxo +4yo
k2
-4kxo+
y r
a
< =>
k 2xo =
0
< =>
k = 2xo
3 3
Khid
o S„
,„
= i8
(y
x2 )2 = l(
o-yo
-x 2)
55l| Cho (P) : y^ = 2x va di/dng thin
g D : x
Tin
h die
n tic
h hin
h phan
g gid
i han boi (D) v
a P
DH Kink
te Quoc dan Ha
Noi
1997
Gidi
Taco: (-2)
ll = 2.1.2
c:> B'^
P = 2AC
ai A{2
; 2
)
Trang 1473 V4
- d
x
Da
t X =
2sint =
> d
x = 2costdt
Doi ca
n :
X = V3
(4t + 2sin2t)
3
t =
0
3 47I +
3V3
^ ^ 2V3
4 7: +
3V3
4 7: +
V3
Do d
o S = + = (dvdt)
I5 54 I
Trong ma
t phin
g Oxy, tin
h die
n tic
h hin
h phin
g D gidi ha
n bd
i ca
c
dudng y = xe"
, y = 0, x = -
1, x = 2
Hoc vien BiCu chinh
a ham
so do
n die
u tan
g tre
n [-1
; 2] v
a y (0) =
0
= e^
Cx-l)
dx = xe" d
x xe" d
2
0 ( 2
: y
^ = 2x v
a (C2 ) :
27y^ = 8(x -
\
Gidi
Phuong trin
) va
( C2 ) :
54x =
8(x -\f
« 8x
^ 24x^ - aOx -
8 =
0
o (
x 4){2x + 1)^ =
0
x =
4
1 y'
X =
— loa
i v
i X = — >
Trang 15Vay giao diem cua (Ci) va ( C 2 ) la : A(4; 2A/2), B(4; -2^2)
5561 Cho diem A tuy y tren (P) : y = px^ (vdi p > 0) Goi (D) la dudng t h i n g
song song vdi tiep tuyen tai A va (P), (D) cAt (P) tai M, N
Hay so sanh dien tich tam giac AMN va dien tich hinh chin tren bdi (D) va phia dudi bdi (P)
DH Kinh te Quoc dan Ha Ngi - 1996
Gidi
Goi A (a; pa^) e P
Trang 16S = X
M + X
N = ^ =
2a
P X jj j^
Do do MN^
= (
XM
- XN)
^ + [ (2 pa xM
+ b ) -
( 2p ax
N +
b)]^
=
^ MN' =
(X
M - XN) ' + 4pV(x
M XN)^
-4P)(1 + 4pV) =
A
2
4b 4a + —
^a2
+ ^.V
l +
4 p2 a2
Vay
SAMN =
^M N.
d(
A, D) = Ja^
2
1 P
Vl+
4 p2
+ b ja^
+ = S
x +
b px^
)dx = pax^
^
: (X
N XM)
-:V S2
4P
-pa(xM + X
N)
+ b-|
(x
^ +x
2a2p + b -
4a + —
= 2
2 "
a + -
(2 2
S 2
= Si 3
Trang 17-B THE TfCH VAT THE TRON XOAY
2 Cho h i n h p h i n g gidi h a n bdi
cac dirdng x = g(y), y = c, y = d,
x = 0, quay xung quanh Oy, tao
t h a n h vat the t r o n xoay t h i :
pd
g(y) dy
55?! Cho h i n h p h i n g (D) gidi h a n bdi cac dudng y = (x - 2)^ va y = 4
T i n h the tich ciia vat the t r o n xoay sinh ra bdi h i n h (D) k h i no quay xung quanh :
1 True Ox 2 True Oy
Trang 182 -V
^f ld
y = 87xJ
^'V^dy
=8 7t
g thin
+ x
^
Ta
CO : f '(x) = -
, C O
MXD : R
2x
(l + x
^)
^
X -ao
1
+ x
^ = -
1
, ca
c dudn
g thin
Trang 192 1 dy = 7iy
1
2 _ 7t
Do do the t i c h can t i m la V = V i + Va = 7iln2 (dvtt)
Goi (H) 1^ m i e n k i n gidi han bdi dudng cong (L) : y = x - ^ l n ( l + x ^ ) , true Ox, va diTdng t h a n g x = 1 T i n h the tich ciia vait the tao r a k h i cho (H) quay xung quanh true Ox
Hoc vien Ngan hang TP.HCM - 1999 Gidi
Phucfng t r i n h hoanh do giao diem ciia (L) va Ox
Goi D \k m i e n gidi h a n bdi (?) : y = 2x -x^ va true hoanh T i n h the
tich eua vat the V do ta quay xung quanh :
1 True Ox 2 True Oy
Trang 202
0
< X <
2 th
i y = 2
x x^ c=
-> x
^ 2x +
-1 -1
- y
, fx
= 1 + J
l
y vd i
yf d y+
f
(
l +^
yf d
2-
l-y)
2
dy +
7t
f
2
y+
2 (l -y
.-2
+ n
2y -^
(l -y
h V ciia va
t th
e dug
c ta
o ra k
hi qu ay h in
h gid
v
a ducfn
g th in
g x = 2 q ua nh t ru
e Ox
Gidi
Ta
CO :
-= -(
1)
x-^ 4
= (d vt t) 4 1
-562
Ti nh t he t ic
h kh
oi tr on x oa
y ducf
c ta
o th an
h kh
i qu ay q ua
g gi
di ha
n bd
i ca
c du 6n
g y = 0 , y
= -^xsinx
+
cos^
x, x = 0
, x
= 2
DH Bach khoa TP.HCM
- 1993
Gidi
Ta co : V
= n^^^fixjfdx
= n
2
(x si nx + co
s x)
dx
0
Trang 212 X sin X dx + 7t [2 cos^ x dx
* Tinh I2 = f2cos^ xdx = fx 1 + cos 2x
Vay V = Tcdi + I2) = - (4 + 71) ( d v d t )
4 563j Cho mien phing (D) gidi han bcfi cac duong :
y = tan'x, y = 0, x = : , x =
-4 -4
1 Tinh di?n tich mien (D)
2 Tinh the tich vat the tron xoay dtroc tao thanh khi quay (D) xung quanh true Ox
DH Nong nghicp - A/1999
Trang 222. V
(D , =
n
V,D
) =
„(
-tan
'' X
4
)M
x + Tt
x (tan
^ x + 1) + (tan^
x + 1) -
1
\^ x)d
x
* (tan'' x
- tan
^ x + 1) d(ta
n x) -
TI
^ (tan'' x
- tan
^ x + 1
-7 i-
=
—(
dvtt
564| Tin
• 2
x = —
2
7 1 7
t X
V = —
si n2
X
dx = — x'
• n
sin2xd
x = —(dvtt)
h kh
oi tron xoay dua
Gidi
Ta
C O
: V =
TI r2
(h ix
n x => d
u = —
X
dv = I
n x.d
x =
> v = x(ln
x 1)
-V =
7t r2 (l nx rd
x = 7r X.
I
n x(l
n x
- 1)
V = 27iln2(
ln2-
l) -7 i
(lnx-l)-x]
1
= 27tln2(ln2-l
7t
)-[(
21n2-4) + 2]
(ln2) 21n
2 + l] = 2jx(ln2-l
)2
(dvtt)
Trang 24X
=> du
j = —
-2)(
dvtt)
568| Trong mp Oxy, ch
o hin
h phan
g D gidi ha
h th
e tic
h kho
i tron xoay ta
o ne
n kh
i qua
y D
quanh
true Ox
BHKinh te TP.HCM -2001
Gidi
Ta
CO
Inx =
0
o x =
x
Dat
2
, 2 I
X
dx
e 2(x In
= 7t
(e 2) (dvtt)
-569J
Cho (P) :
y = x^ (
x >
0).
Gpi D la hin
g d c6 phuon
g trin
h y
- -3
x + 10,
y =
1.
Tin
i qua
y quan
h tru
e Ox
Gidi
Goi Vi
la the tic
h va
t th
e tro
n xoa
y d
o ABM
h va
t th
e tro
n xoa
y d
o NMC
h tru
do hin
h chii
f nha
Trang 25gidi han bdi y = xe", x = 1, y = 0, vdi 0 < x < 1
bdi y = — va y = x^ k h i h i n h phang quay quanh Ox
Trang 26)72| Ch
o hin
h phSn
g H gidi ha
n bcf
i ca
c dudn
g y = xlnx, y = 0, x
^ xd
x
Dat u = In^
x =
> d
u = 21nxdx
dv = x^dx
=> V =
Vay V =
n xd
x
Ta tin
h I = x^Inxdx Ji
dx x — , u = > d x = = In Dat u
dv = x^dx =
x -
-3 J
i x^dx = —In
x
-i x3
Tc
^-A(
2e 3.1
Tt(5e3
2)
27 (dvtt)
' x + sin'
* x , x = — , x = TI
e Ox
Gidi
Ta
CO
: V =
7t
^ (cos
* X + sin'' x)d
Trang 27b) T i n h the t i c h vat the t r o n xoay duoc s i n h r a k h i D quay quanh Ox
DH Kien true Ha Ngi - 1998
Gidi
a) Dien t i c h h i n h ph^ng D
/•O - 4
575| T i n h the t i c h kho'i t r o n xoay tao t h a n h bdi h i n h t r o n
x^ + (y - b)^ = a^ (0 < a < b) quay quanh Ox
DH Kien true TP.HCM - 1991
Gidi
Vay phucfng t r i n h nijfa dudng t r o n A m B l a y i = b + Va ^ - x^
phuong t r i n h nufa du6ng t r o n A n B l a y 2 = b - V a ^ - x^
293
Trang 28Do d
o V = T:
bV a2
h hin
h gid
i han
di (E) : — +i
Gidi
Taco: 4^
4 = ^ «
T rf '
^u^-^^)dx
= ^ f
^a
x2
^-)d x
h v
at th
e tro
n xoa
y sin
h r
a b
di hin
h eli
p + ^ <
1
quay quan
h Oy
DH Xdy dang -
1998
Trang 30T DA NG THLfC
T RO NG T iC
H PH
AN
KIEN THLfC C
d BA
N
1.
Neu
f, g la ham
so lie
n tu
c tre
n doa
n [a
; b] v
a f(x) <
2 Ne
u f lien tuc tren [a; b] t
hi g(x).dx
a m < f(x) <
M V
x e
[a; b] t
hi
m(b
- a) <
(A)
(B)
Tron
g thiJ
c han
h t
a ca
n nh
d :
a) Muó
n chuTn
g m in h mot ba
t d in
g thuf c ciia tic
h p ha
n tic
h p ha n
da gio
'ng n ha
i, ta chi ca
y r a
giOa ha
i ham dudti da
u tic
h phan
nhau r
oi la
m nhu
trUdng hcfp tr en
b)
Trong truorng ho
h
bi cha
n cu
a ha
m na
y (tuf
c l
a ti
m Min, Ma
h cha
t (A), (B
) d
phan tren
578|
C hil ng m in
h rk ng : — < 2
2e='"
\dx
(do e < e < e
2ế"
\dx
< 2e
.dx
Suy r
a — < 2
Tie < dx \ 2e='"
Trang 3258l| Chiing
min
h rk
ng : — <
dx
0 5 + 3cos
^ X
10
Xet ha
m s
o f(x) =
e
Ta CO :
dx
16 J
o 5 + 3cos
^
10
0 5 + 3cos^
x 1
0
Chufng min
m f(x) = x
- 4
x + 1; f '(x) =
0
X = 1,
+ 0 -
l-x) 2d x<
^
27
5831 Chufn
g min
h r^n
g : — <
6
dx 71
A/2
Gidi
Ta CO :
2X2 < 4
- x
^ x'^ <
4 x^
Trang 33Ta xet T(x) = xcosx - sinx
T'(x) = cosx - xsinx - cosx = - x s i n x < 0 Vx e
Trang 34dx <
n 3
thi 4
aVs
s in XQ
Zl vn
= dx
<
dx
0 2
dx
Hay:
Pha da
u b^n g
Xo =
—
th
i 1 <
^1-4"
A/I
0 <
x <
-= c [0; 1 ] =
> 0 < x
Trang 36Chufngminh: 54V
dx
< 108
Gidi
Ta x
et f(x) =
t dan
g thiJ
c B C S ,
ta
c6
|f(x)| <
Vd^
x)
<6 (1)
Ta la
18
Vay f(x) >
Vl8 = 3 , /2 (2)
:
3 >/
2
< f(x) <
6
Su yr a:
3V2(ll +
7 )<
11
f(x).dx
< 6(1
1 + 7) = 108
Ghi chii : T
a c
6 th
e tim
in, Ma
x cu
a f{x) = Vx
11
1 1
Vll-x
- V
x +
2Vx + 7 2 V1 I-
X 2V
X + 7 V 1I -X ' f' (x
ih
f ^
Vl-x
^ co
s e
" + V3 + x
Gidi
Do ba
t din
g thuf
c B C S , t
x2 )
sin e" <
2
-2 f^
dx
<
f\
Vl-x
^ cose
" +73
^ (
Vl x^
cos e
" +
sTe^
sin e" )d
x <
2
(V
l x" co
-s e
" + V3 + e^sine
" )d
x <
2
Trang 38|592| Chiin
g min
h rin
x
DH Tdy Nguyen -
2000
Vi
1
< X <
h ran
g : J
- >
V6 Jo
^ 1 r
-x =
f ^
1 + cos 2t
n ta c6 x
Ne
n 1-x
^ dx
0
V1 + x''
Ap dung ba
t dSn
g thiJ
c Bunhiacopski, t
a c
6 :
n rl
^)dx
Trang 401 — d
x <
- (dpcm)
1 x2
1 1
l<
(n-l)]
n (n - 1
dt <
(e" 1)
<(e^ -1)
1 1 e I 2
^'-}
(3)
T Cr (2)
va (3) su
^ (e"
- 1)
2J
(dpcm)
Trang 41Ta CO : f [k^ + (4 - 4k)x + 4x^].dx = [k^x + 2(1 - + x" ] ^
= k^ + 6(1 - k) + 15 Vay theo d§ bai ta c6 : k^ - 6k + 9 < 0 <=> (k - 3)^ < 0 o k = 3
307
Trang 42ChiJng min
h ran
Gidi
Xet
ham
so fix) =
Ta
c6
[f(x)]
2 = VcOS^
X + COS
7 1
cos
X
+ cos
X +
1
va da
t t = cosx DK
: 1
G'(t)
+ 0 -
^
^ 22
^
2 Vcos
^ x + co
s X + 1 ^
•''2A /3 0
04|
Chiing min
h : — <
e
^''-'''d
x <
21/^
BH Nong nghiep I
x x^
-vd
i x
e [0
; 2 ]
f '(x) =
1 2x,
f '(x) =
0
<=
> x = -
2
Trang 44t f(x) = sin
X
2 1 ne
X
< f(x) Vx
-sinx
f(x
f (x)d
x =
4
f (x)d
x +
2
f (x)d
x >
4
f (x)d
X , d 4
x + X 7 1 - 0
•xsi
X
dx
SO TJ
Cho
X >
0 Chufn
g min
h rang v
di mo
i so' t
if nhie
n n > 1, t
a c
6 :
x2 X
^ X"
e
>
l + x+ — + — +
h hKng
phuon
g pha
p truy h
oi
* Vd
i n = 1 : Ta
CO
e'' >
1 Vy tho
a 0 < y < x
y ba
t ding thiJc diing v6i n = k, tiJ
^ >
1 +
y + — + + — vd
i 0 < y
x^ x
^ x'^^
Trang 45e > l + x + — + — + +
2! 3! (k + D ! Vay bat dSng thdc diing vdri n = k + 1
Theo nguyen l i quy nap ta ket luan bat dang thufc dung Vn e N
Gidi
2 ế" "dx
311
Trang 46Ddi ca
n
Nen Vay
, 1
• —
2 COS + "dx ^ Sm g 2 x = ế" M
X J
^
0
TCr (2) v
a (4) su
y r
a :
Tir (3) v
a (5) t
dx
= ln(
x + 1)|
a c
6 :
\2
1 =:
f
f
l ^ 2
ti l
e tre
n [0
; 1] ne
n tron
g ba
t
Trang 47ding thuTc (2) c6 dau < nghiem nguyen)
= xe" |cos nx| dx < xe"
Trang 48612] Chufn
g m in
h r^
ng : 27tV
7 <
j j"
V^2 + s in x)(6
- si
x
Do 0
<x
<2 Tt =>
- si nx ) = (2 + t)(
6 t) = -t^
+ 4
t + 12 V
t e [-1; 1 ]
f '(t ) = - 2t +
4, f '(t) =
0 =
> t = 2
t -«
15
=> A/7
< V(
2 + sin x)(6 - sin x) <
A/15
V7 dx
<
=> 27tV7 <
f^" V(
2 + s in x)(6
- si
n x)d
x <
V l5 2
Da
u kh on
g x ay r
a
vi X
Q =
n e [0; 27t]
, th
i :
7 <
(2 + sinx)(
6 s in x) =
12 <
15
{•2K
V(2 + s in x) t6 -s in x) dx < V l5
r2:t
dx
Do do 27IA/7 <
V(2 + s in x)(6
- si
n x)d
x <
2 nV l5
613| Chufng min
X
Gidi
Ta CO : sin''
x + cos''x =
1 2sin^x.cos'^x <
1
sin'* x + CDs'
x + cos''x >
2sin"xcos^x (cau 2)
< => 2(sin^x
+ cos''x ) >
sin^x + cos''
x + 2sin^xcos^x
o 2(sin^
x + cos''x) >
(sin'^x + cos^x)^
= 1 <=>
2 >
1 sin''
X
< 2
Trang 49Xet h a m so f ( x ) = f l E i i day l a h a m so giam t r e n (0; 1]
Trang 50Do d
o V
x e [0; 1 ] t
hi sin
x <
x
Vay I„
= sin°xdx
< f x"dx
+ 1
T Cr (1) v
a (2 ) : —
^ sin"^
^ 1 < L < ^
(sin 1 )
n +
1
< L <
n +
1
(2)
IG IS I
a) Chiln
g min
h :
x ^ <
x sinx
-Ta C
O
f '(x ) =
1 cosx >
0 V
x e
R
Vay fix ) l
x sinx >
1 + —
2
g"(x) = -sinx +
=> g'(x ) =
C OS
X
1 + — l
x sinx >
Tir (l) , (2
Trang 521 1
f
1^
f '(x ) = —
— + cotx
si n'
X X 2x
-(2x + sin2x) , g'(x
) = -(2 + 2cos2x ) <
0 V
x
Vay g(x ) l
x >
0 th
i g(x ) <
g(0
) =
0
Do do : f ' (X ) <
* xd
x
0 cos 2
x
Chijfng minh : ta
DH Quoc gia TP.HCM
- 1997
Dat u = tan
1 + tan^xjdx
=>
dx =
u = tan
t
u =
0
du u^+l
4
du
I(t) = tan
t U'' +1 j-trnit
u ^d
u f t
an
t ( u"
*
1) +
1
du
Trang 54^ x)(
l + cos'* x)
2sin
3-^ x.cos
^ X
3
(1 + sin'* x)(
l + cos"* x) (
1 + sin^ x)(
l + cos* x)
3 si
n 2
,l + sin
*x
l + cos''xy
(1 + sin''x)(l + CDs'
(do x
e
1 1
1 + sin'' x
1 + cos*
x)(
l + sin" x)
2
sin 2x
X
1 + cos"
7 1 — > ) 6 sin" x l + x)( cos" (1 +
Dau "
="
khon
2
, 4
^ U i 4
sinx.cosxd
x ^
Jo
(1 + sin" x)(
l + cos" x) 1
2
20| Chiin
g min
h rkn
g f(x), g(x) l
a h
ai ha
m s6' lie
n tu
c tre
(x)f dx.JJg(x)f dx
Hoc vien Quan y
- 1995
Giai
Ta C O
: [X
f (x) - g(x)f >
0 V?
e
R ^ ?.¥(x) -
2Xf(x).g(x) + g'(x) >
0
Trang 56Gidi
Ap d un
g ba
t d^
ng thiJc Bu nh ia co ps
ki ch
o ha
i ha
m f(x ) =
1 t re
n [0
f
I
Vl -f
^(
x) dx < ,1
-f2
(x )d
x
vi Id
g ba
t d^
ng thufc Bu nh ia co ps
ki ch
o ha
i ha
m F(x
1 t re
n [0
i
r
^d
x = x|), =
\
1-rl ^ ' 1
x > J 0 V • J 0
Vl -f
(x )d x<
o y = f(x ) c
6 da
o ha
m va dao ha
m cu
a n
o li en t
uc tr en [a;
0 va
M = m ax
f '(x ) Chiimg
m in
h rk ng :
xe [a ,b
l
(b -a
0, Vx
e [a
; b]
th
i f '(
Ta
CO f (x )
f '(t )d
t f'(
t)
dt
Ma |f '(t)
! <
M Vx
e [a
; b]