292 Tin
h I =
• 7
X sin
X + (
x + 1)
(7
X
sin
x + (x + 1) co
4 _
71
~ 4 0
xcos
- In
1 = I
J o
X sin
X + co
s x 4
h I =
x u = X
Trang 3) + (x2+ xnx2V77377T )
i + x '
h I =
2tdt = 2xdx
dx
= In -
E sie l Tin
h I =
rl
(1 ^
-1 u >
Trang 5^ Tinh
1 =
j "
^e'^ Idx
-Gidi
Dat t
= V e"
Vi t
^ +
1 = e" =
> d
x = 2tdt t^
1 =
1
t = V e"
u =
> d
t = (tan^u +
u + 1)
0 tan^
u +
1 du =
V e"
- Id
x =
•4 du
= 2- 2.
^ = 2
-^
[299I Tinh
(2" 9)73
"
2 =
^ t'=
3.2
-2
5
Trang 7Gidi
Da
t t = 1
- X
=
>d
t = -
- tf
-
3(
1 t)^
- (1
- t) +
1
= -2t^
£
^2x^
- Sx
^
x + Idx = ^ ^-(
2t
^ St^
- t +
Su
y ra : 2
1 =
0 =
> I = 0 <=
> I =
^2t^
- St
^
t + Idt = 0
Jo
soil Ti nh
Ta
CO :
I =
Gidi
0 dx
fO
1 + V-x(l + x) "'-
^
dx
1 + 1
V4
4 1-
2 +
cos u
du
2p
n — =>
d
u = '^^^
1 +
e
Do
i ca
Trang 9-2 + ^
305| Tin
-> d
x = -
=costd
td
t
fO l + cos2
t
V3 J td
t =
• ^
2 V
3 J (1 + co
s 2t)d
t
2 (
h I = ''Vx^
2x
-^ +xdx
- D^d
x = f
^Vx{
x)dx+ fVxC
l-
x-Dd
X2 dx - rl
2
x^dx +
4
2 i = -x
= 8
Trang 11CO
: I =
Gidi
f3
3 + lnx
dx
l2 =
f3
I
nx , I
3 ,3
-d
x = + I
310 Tin
h I = In
x
Jl x(
2 + Inx
f -d
x
DHKhd'i B -2010
Gidi
Dat u = In
x =
> d
u = —
X
• 1
* 2 + (2 +
3
- (In
2 + 1) =
In
1
3
ill] Tin
h I = fe^
In
^x
'I xV ln
x +
1
dx
1
fx =
X = e
Gidi
t^ = Inx +
a t
^ - 1 = In
Trang 13dt
t2
.4 -1
t
2dt
= 2t
2
315| Tinh
I = j
j x^Va
^ x^
-dx (a > 0)
£>// Su phqm Ha
Ngi +
CD Hdi quan -
1999
Gidi
Dat X = asin
t vd
i t
e
dx acostdt
^d -s in
l-^ r , sin4
" +
1 « = e
" +
1 ^ 2 td te Mx =>
I 317 I
Tinh va bi^n luan theo tham
so difdn
g a , b : I = f
- 1980
Trang 14De h a m f(x) k h a tich t r e n [-a; a] t h i f(x) phai lien tuc t r e n [-a; a]
x = - a
Do do : I =
t =
dx , b |
Trang 15Vay I =
I = -t°.t
" ^
0 Tinh
1
= > 2ud
u = e^d
x
x =
l n2
x =
0
• I n
^
I =
2 .V3
(u^ l)du =
CD Giao thong Van
tdi -2000
Gidi
Ta
CO :
^x^Vl + 3x^
> =
1 + 3x* =
> 2td
t = 2 4x
xi
«V iT 37
-dx
(a > 0)
Trang 16u = 1
u = 0
Trang 17I = fe V
2 +
nx ^ 1 f
i
dx = -
1 2
x 2 V2
+ ud
u = —
2
(2 + u)
2 3
= -(
3V3
-2 V2
I
/•In 10
p^d
x
Cho so thuc
b >
ln2
Ti nh
J = , v
2
DH Quoc gia TP.HCM
- 1999
Dat u =:
e"
- 2
Doi ca
n X = I
x
u = e
^"
i°
-2 = 1 0-
2 =
u = e"
-2
Va
y J = (•In 10 e^dx
•8 du
3
-K — =
i 2 e''-2
4
(e''
2)3
Suy r
a li
m J = li
m —
b^
.l n2 b ->
ln
2 2 4- (e '' -2 )3
= -.
4 = 6
i
25 T in
h I = tan
X
Jo (
4 co
s X- si
n x ) co
s X
•dx
Gidi
Ta CO : I tan
X -dx
= tan
x
(4 cos X
- si
n x ) co
s x Jo
(4
- ta
n x ) cos
^ x
X =
0
Dat u = tan
x
= >
du =
dx
CO S^
X Doi ca
n
7 1
=>
X = —
nx
• 3 (4 cos X
- si
n x ) co
s x -dx =
• 1 udu -1 f- 1-
- 4 = -
u
J o
J o u
- 4 -4
1n (u -4 )
= -1 -4
h I =
rr si n X + co
s x
J o 3 + si
n 2
x
Trang 19-x
l + 2cos3
a cos4
x + cos2x = 2cos3xcosx
Suy r
a : cos5x - cos4x =
(cos2x cosx) +
2cos3x(cos2x cosx)
-= (cos2
x cosx)(l +
2cos3x)
J,
cos5x-cos4x (cos2x -
Vay
I2 =
W
dx = »
TT
- T
17
x + cos5x - cos4x ,
-J2 r ]=
Vay 1
= 8
dx =
V2 -V
rz xco
s X
+
cos8x cos7x
Gidi
(4
X C OS
X + C OS
8x cos 7
-x
1 +
2 C OS
5x
dx
X CO S
-x
l +
dx
Trang 20Suy r a : cos8x - cos7x = (cos3x - cos2x) + 2cos5x(cos3x - cos2x)
= (cos3x - cos2x)(l + 2cos5x)
Trang 211 = '1 udu
• 1 udu ( •]
Jo
4 -u
0
u -4
u
4
= 4 1n
331 Tin
h I =
1-3 Vl
t t
hi -1 < x < 1 nhimg
d da
y 0 < x < 3 V
e 3 = sin
t
Do d
o tin
t khon
g ducfc
332I
Tin
h I =
- cos
dx
CD Hdi quan -
1999
7 1
Jo cos x :dx =
V8 -2 si n2
x V 2
x =
> d
u = cosxdx
Dat u =
h I =
1 ^ sin2x
° Vcos^
x + 4sin^x
Trang 231
(-x^ + l)dx +
1
—+
2x2-3x
Vay I =
Gidi
Dat f(x ) =
- 2
x +
m c
6 A ' =
1
m
Khi m > 1 <=>
A' = 1- m < 0 =>
I(m)
=
x ^ 2x +
m
X 2 X
-= m
- —
Trang 25Isssj Tin
h tic
h pha
n I = £
I339I
Tinh
|d
x
DH Quo'c gia TP.HCM
- 1991 + DH
Y duac TP.HCM -
1996
Gidi
* Kh
i a < 0 t
hi x
- a > 0 Vx
e [0
; 1]
Vay
1(a
) = x
|x-a
|dx+
xlx-ald
+ (x
^ ax)dx
i a > 1
hi x
- a < 0 Vx
e [0
; 1]
3
a _
1
2 3
Trang 26fix) - g(x)
+ 0 0
0 Vay 1 = |f(x)-g(x)|dx = | f ( x ) - g ( x ) | d x + f ^ | f ( x ) - g ( x ) l d x
Trang 27(X S OD - ) + XS OO :
2
11
+ Xp (X U TS - ) "
f = xp |X U TS
^aisgyNg =
I
^p
^S OD /
-
;p
i S OO J = :^
K-U
= X UB D log
Trang 2811-Do do I = - ^ |sin t| dt = - J ^ |sin t| dt + - ^ jgin t| dt
Trang 29I =
A /1 + cos 2xd
x
DH Thuy Igi -
1997
Ta
C O
: I =
Gidi
Vl + COS2xd
x =
f V2cos
^ xd
x = ("'A /2 cosx
-x = V2 si
n x
2 V2 si
cosx 0 Vsin
xdx
DH Bach khoa Ha
: I =
|cosx| Vsi
n xd
x + „ |co
•
Vi ha
m s
o f(x) = x"
-x
^ -1
2
Gidi
la ha
m so' chSn, lie
f 1
dx
-1 x
^ x^ -
12
1 xd
x
0 x^ - x^ -
12
Da
t t = x
^ =
> d
t =
2xdx
Trang 31- cos
^ x dx = 2
p
cos x-y/co
s x (l - cos^
= cos
x
= :>
2tdt = - si nx
2t dt ) =
0
5
350| Tin
h I =
f2
co sx
dx
0 V
2 + cos 2
x
DHYHaNoi -1996
Gidi
Taco: 1=
f i_
t vdt
i
t e 0;
^
2 V2
cosxdx = A
°'
^^
^' V 5
r«
co st
dt V2
* Va
a-si n^
t) 2
\35l\h I =
• o C OS X
+ s in
t 2x in + s Va 4 7
D/
/ Tdi chinh Ke
todn
1999
Trang 33a) Ne
u m, n
1 - co
s 2x
2
1 + cos 2
X
= , cos
t t = sin
a am, da
t t = tan
x hoa
c t = cotx
53 Tin
h I =
2 cos* xd
x
DH Sa phqm TP.HCM
s 4
dx
- x + — sin 2
x + — si
n 4
2
_ 37
DH Quoc gia TP.HCM
4 2
(l-cos2x )Mx= - 4 J 0
— 2 cos 2
x + — co
2
2 (1 + COS 4x)dx =
m
271 4 U
7 1
4
Trang 34356| Cho I = 2 cos^ X cos^ 2 x d x ; J = 2 sin^ X cos^ 2xdx
Trang 35358 Tin
h I = 2
sin^ X CDs'* xd
x ,
DH Ngoai nga Ha
= - (
1 - co
s 2x)(
l + 2 cos 2
x
1 r
1 1 ^ — co s 4x x - co cos 2 1 + -
V4y I
= 1
+ - CO S
2x cos 4
-x — cos 6
dx
— x + — sin 2
s 4xd
x =
- M (cos 4
^ ° x
- cos
* x sin
* x)dx
DH Sa pham Hd
Ngi - 2000
168
Trang 36Gidi
I = 2 (cos^° X + sin^° X - cos"* x sin^ x)dx
2 [cos^° X + sin'" X - CDs'* x sin'* x(sin^ x + cos^ x)]dx
2 [cos^ x(cos^ x - sin'' x) + sin^ x(sin'' x - cos'' x)]dx
2 [cos® x(cos'' X - sin^ x) - sin® x(cos^ x - sin^ x)]dx
2 (cos* x - sin* xXcos® x - sin® x)dx
36ll Tinh I = 2 cos 2x(sin'' x + cos* x)dx
DH Bach khoa Hd Noi - 1998 Gidi
Ta CO : fix) = cos2x(sin''x + cos'^x) = cos2x(l - 2sin^xcos^x)
= cos2x l - - s i n 2 2x
Trang 37f(x) =
C OS
x + — co
i
62 Tin
h I =
2 sin^
xdx,
Ta
CO
: I =
2 sin^
xdx =
Gidi
2
(1-
2 _ 2
~ 3
laesl
Tin
h I =
sin* x sin xdx =
(l
-t 2) 2d t=
f
\l-2t2+t'')d
+ -
- — ~ 1 3 5
5 •
Tin
h I=
= f " sin^
° x si
n xd
x =
f "
(1 cos^
x)^
sin
Trang 38Dat t = cosx => dt = -sinxdx
Trang 39Gidi
Dat u = sin
x =
> d
u = cosxdx
2
sin^ x cos^ xd
x = ^ sj^
3 5
1 1 _2_
3 5 " 1
5
Tin
h I =
2
sin'* x cos^ xd
x
Gidi
I =
2 sin"* X cos^ X = 2
sin"* x(l - sin^ x)
l-t2 )2 dt =
(t"
-2t^
+t^
h I=
dt =
dx
cos^ x Doi ca
h I =
Trang 41g (1
- si
n x) co
d(sin x
)
ln|sin X 1-
2
374 Tin
h I =
-l
n
3 2
= I
n 3 + -
3
37 5I
Tinh I =
X
dx
=>
du = sin xd
x cos^ x
cos^ x
V
= tan
X
Trang 422 Cho cac so thirc ai, 3.2, a„ thoa :
aiCosx + a2Cos2x + a3Cos3x + + anCosnx = 0, Vx € [0; 2n]
Hay siir dung ket qua tren T i n h ai, 32, &„
DH Qudc gla TP.HCM -A/1999
Trang 43t T(x) = aicosx
+
a 2C os 2x +
+ a nC os nx = 0
o coskx
(aiCOSx + a2 Co s2
x + + a
jx cos jxdx
= T
Vay tCr (*
7t
377 Chufn
g min
h L =
2 cos
" X cos(
n + 2)xdx =
0 , Vn
- sin(
n + l)
x si
n x] d
x
2 cGs
(n + l)
x si
n x cos" xd
x
Da
t
u = sin(n + l)x => d
u = (n + 1) cos(
n + l)xdx
dv = sin
x cos
" xd
x =
> v = -
•
co s"
^ X
2 +
2 cos(
n + Dxcos"""^
0
+ I
i
Vay In
= I
i I2
= 0
,V
n e N
Tin
h I =
2 si
n 2x(l + sin
l + cos x)
^ d
DH Ngoai thuong -
1999
Da
t t = 1 + sin^
Trang 44Dat t = 1 + cosx ^ dt = -sinxdx Doi can
Ta CO : cos2x = cos^x - sin^x = (cosx - sinxXcosx + sinx)
Dat t = sinx + cosx + 2 => dt = (cosx - sinx)dx
Trang 45Ill
Tinh
I =
•- sin
dx
HV Ngan hang -
D/2000
Ta
CO
: I =
^ 2 sin 2x(2cos'^
x 1)
x =
> d
t = -sin2x
I =
|[
2(
l)-l](
t d
t) r2
(2t-3)
•dt ^ (2t-31nt)
h I =
dx
6 sm X s
in
X + —
6
DHLudt Hd Ndi -2000
m X si
n X COS
—
+ co
s X
= — sin
x(V3
sin
x + cos x
2 I
n
r
v3 + cot
x V3 +
n 2V3
= ln
|383 Chutn
g min
u
cos mx cos nxd
x = sin
Trang 46Ta CO cos nix cos nxdx = —
Vay \ cos^ x cos 7xdx =
Trang 472 :
I = R(sin
x, cosx)d
x vd
i R l
a ham hufu t
ti chiJ
a sinx, cos
R
(sinx, cosx) t
hi da
t t = cos
x
2 Ne
u R
(sinx, -cosx) =
R
(sinx, cosx) t
hi da
t t = sin
x
3 Ne
u R
(-sinx, -cosx) =
R
(sinx, cosx) t
hi da
t t = tan
2
Luc d
o sin
x 2t
-t^
l-' 1 + t
-1 d
x
385| Tin
h I =
~ 4 sin^ xd
x
0 1 +
cos x
DH SiC pham TP.HCM
- 1994
Giai
Nhan
xet R
(-sinx, cosx) =
R
(sinx, cosx)
Da
t t = cos
x
= :>
d
t = -sinxd
x Do
C OS
38
^ Tin
h I =
ma
1999
Giai
Nh an
xet :
R
(sinx, -cosx) =
R
(sinx, cosx)
Trang 48Dat t = sinx => dt = cosxdx Ddi can
Trang 49Gidi
Dat t =
Ddi ca
n
tan —
1 2dt
-I =
1 +
0 (
l + t^)
h I _ f
B -2000
Gidi
Ta
CO :
sin xd
x sin
CO S^
X
•| d(cosx)
3
- CO
3
390| Tin
h I
JO sin^
X
— d
DH Quoc gia Ha
Ngi -1997
Dat t = cos
x
Gidi
dt = -sinxd
x Doi ca
n
X = —
q -cos
^ x) si
n xd
x _
f » (1 - t^
)(-dt)
0
•of
1 1-1
+ CO S^
X
2 ^
1 + t^
t^
+1
dt =
1
391 Tin
h I = r2
C OS
xd
x
- ~ (1 C0 SX )'
Trang 51X
\D + ; r
(^P-)
;3 uis + X
5
,soD + ; —
= x
p Xg
U TS +
X
X
, UI
S +
X
0 = %
X
0-X
, UT
X z
- = ;p <
^ -"
- X7 U TS
XZSOD
+ X
X
+ X S OD
OD
= Xp
(X +
X SO
O
X j,SO0 ) g
X
+ X
S OD
- X j SO D)
[I
(T +
X gS OD )]
£ XPX „ SO
D
-= I
:
03
Trang 52Suy ra : 21 = I + I = 1 X + Sin X H X + cos X
Trang 53J
-J o 2t +
l
,2Vt2 +t 2Vt^
Tt, (it = V2 - ln(>,/
2 + 1)
Vay I cos2x
+ co
s X + 2
2 :dx =
- +l
- V
2 + ln(V
i 4£
l^
iiLl
£^
dx
3 + sin 2x
Gidi
Ta
CO
: I =
~ si
n X + cos
Dat u = sin
x cosx =
-> d
u = (cosx + sinx)dx
fO
du -0
du
-14-u'
-1
u^
-4
-
In
u -2
1
=
[ '"
-J :^
4t 4(
t + 1) 2(
t + 1)^
ln
398| Tin
h I =
dx
1 X
(x2012 ,
1)
Trang 55400| Tin
h I =
« In
Ta
CO
: I =
• « In
X
1
1 x^
-In^
X
dx =
Gidi
re In
X
dx
Dat u =
In
X
(1-lnx
^ du
h I =
• e In
X
+ In
X
1 (In
X +
X +
if
dx
• e In
X
+ In
X
•1 (In
In
X +
1
dt = In
X
(ln
x + 1)^
ri
_dt_
8 (e
+ 2f
402I Tin
h I = 1 x^ + tan^ x
-i l + x
^ dx
Ta
CO :
* Tin
h I,
-U + x
^ -dx = -1 x^
-x
^+
^
l-1 + x
Trang 57404 Tin
h I =
• s
-m X ,
•^9 +
4 cos
X
Gidi
Dat u = cos
x d
u = -sinxdx
Doi ca
n
K
X = —
a = —
t +
1 2 (•"
4 3-
dt =
- t 6 0
I = — vo
i ta
n a = -
405 Tin
h I = cos xd
Da
t t = sin
dt
X = —
-I = (ln
|t
-3
ln
|-|t
-2
|) r
h I 'i^^-'Sxd
x
Jo cos
X +
1
DH Quoc gia TP.HCM
Trang 58sinmx.cosnx = — [sin(m + n)x + sin(m - n)x]
2 sinmxcosnx = — sin2nx
2n
neu m ?^ n
neu m = n
Trang 59x = —
x =
0 Vm, n
x
-7 1
h I =
'2 cosxd
x
" V
l + cos^x
DH Da Ndng -
t u = sin
x =
> d
u = cosxdx
=
fi
du
V 2
^
du = costd
t
2 = 2
- 2si
n t = 2(
1 sin
-^) = 2cosn
4
t =
0
Vay 1 = V2 costd
'0
4sinxd
DH Thuang mai -
4
Nn3
o
sin xdx
sm
X + -
4J
Doi bien, da
t t=
4
X:
=t -^
4
Trang 61h I =
2é'"''cosxdx +
^cos^xdx
2e
"'"''d(sinx) +
- 2(i + cos2x)dx =
h I =
2 ế" "
si
n x cos'^ xd
x
DH Kien true Ha
n
I = -
h I
-i
- 3 sin
X +
4 cos x ,
5
DH Thuy Igi -AI2000
Gidi
I =
f- 3sin
x + 4cosx
Ii = I2 =
0 3sin'^
x -dx
dx =
0 3sin^
X +
4 cos^ x
0 dt
0 3 + cos
^
X
-13 + 1^
eVs
2 d(sinx)
Trang 63- sin
X , , ,
^ d
x =
- I
n cos
-l
71 ,
V 2I — In 4 2 — +
dx
0
2 cos^
4 0 X =
u =
a vd
=-
sU
1996
Dat t = cos
x
Gidi
dt = -sintd
4 -(
co
1-s x) si
n xd
x _ ^
^ 1 + cos'
* X l
(l-t
^)
dt
1
1+t
^
Trang 64Lai dat u = - + t => du =
t Doi can
dt
t = 1
u = 2 3V2
Trang 65422 Tin
h I =
1 + sin 2x + co
s 2
x ,
sin X + co s
X
BH Nong nghiep 1
Ha Nqi
- 1998
Ta c6 :
Gidi
1 + sin 2x + co
s 2
x sin
^ x + cos
^ x + cos
^ x
- sin
^ x + 2
sin
x co
s x
sin X + co s
X sin
X + co s
X
2cos x + 2 si nx co sx 2cos x(co
s x + si
n x )
= 2cos
Vay 1
^ Ti nh l=
f
i '^
"^
^^
^ ,
•'0 ll -7 si nx -c os
^ x
CD Hdi quan -
1998
Gidi
Ta CO : I = cos xd
x cos xd
x
0 1
1 7 si nx
x d
u = cosxdx
0 sin
X
7 si n
n 3 u-
2 so ' a , b sao cho : 1-
x
a b
x • • +
(x + l)(x^
+1)
X +
1 +
1 Vx
*
-1
b) Tin
h I = 2 (1 - sin x) co
s xd
x
0 (1 + sin x)(2 - cos^ x )
BHAn ninh -1999
a)
Gidi
Ta CO :
1
x = a(x^ + 1) + bx(x + 1 )
1
x = (a + b)x
^ + bx + a
Trang 66Suyra j!h(x)dx
• + •
(2 + sin x)^ (2 + sin x)^ (2 + sin x)
DH Bach khoa Ha Noi - 1999
Trang 67|426| Ti
m A , B , C sao cho
si nx
- cos
x +
1 = A (s in
x + 2cosx + 3 ) + B(cosx
- 2s in
x) +
C
DL TB
v ao d
o, ti nh
I =
r::
s in
-co sx + 1
Gidi
Ta
C O
: s in
x cosx + 1 = A (s in
-x + 2cosx + 3 ) + B(cosx
- 2B )s in
x + ( 2A + B)cos
x + 3
A +
C
A 2
-B =
1
2A + B = -
1
3A + C = 1
A = -
B = -
1 B
(c os
X
2 si
n x)
= A + + + 3 s x 2 co X + sin
Va
y 1=
, 5
J
^d x-
^ 5 0sin
X +
2 co
s x + 3 s in
x + 2 co sx + 3
X
5
2
3 ,.
„ s In — m
0
o
1=
_ JL _3 _3 (i n4 _i n5 )^
8
10
5 5
5 (*)
Ti nh
I =
dx
Da
t t = ta
n
-2
0
s in
X +
2cosx + 3 1/
dt = -
2
ta n2 -
+ l
dx dx
= 2d
n
71
X = —
t^
1-) „
• 'o t2
^
1 + t
^
La
i da
t t + 1 = 2t an
u
dt = 2 (t an
^u + l )d
u
Trang 684 sin X + 3 cos x + 5 4 sin x + 3 cos x + 5 dx
Trang 691 d
t
1 + t^
+ 5
0 2t
^ + 8t +
^ t + 2
XT- T
1
,9
1
Vay 1=
- + ln- +
428 Tin
h I =
dx
0
(sin
x + 2cosx)^
DH Su pham TP.HCM
-D/2001
Gidi
Kh
ai trie
n mau, chi
a t
u T mi
x =
> d
t = (tan^x +
l)dx Doi ca
n
I =
fi d
x -1
h I = ("
sin 4xdx
0 sin
^ X + cos
^ X
DH Ngoai thuang -
A/2001
Ta
CO
: f(x) =
Gidi
sin4x s
in4x
sin
«x + cos
«x i
_3 si n2
f lie
n tu
c tre
n doa
n hay I
ton t
ai
Trang 71x + cosx =i d
t = (cosx - sinx)dx
t =
1 + sin2x
1
t =
1
t = ^
Vay I = -
3 + 4sinx - cos2x
sin2x
Gidi
3 + 4sinx - cos2x *
sin^ x + 2sin
x =
> d
t = cosxdx Do
i ca
n
Nen I =
• 1 tdt _
fH + 1 -1
sin2x ,
Trang 72433| T i n h I =
Gidi CACH i : Ta CO : - ^ l ^ ^ ^ d x = -
Trang 73Va , - X
tan
X tan
xdx + -
* 2 cos^
X -dx = -
2 J
o 3 tan^
xdx = -
2 3(tan
^ x + l )d
x-
pd
x) 3
1 0 ^
2
I
3
2
Suy r
a : I = Ij + I2 = -
-I n
x 6
2
7 1
43 5I Ti nh
I =
cos 2
x
sin 2x + cos 2
x
•dx
DH Thily sdn Nha
Trang
2001
Gidi
Ta da
t J=
[
8 sin 2x
0 sin 2x + cos 2
x -dx
Ta
CO
I
J = f- (c
os 2
x sin 2x)dx 1 r -d (s in 2x + cos 2x
-)
0 sin 2x + cos 2
x 2
J 0 sin 2x + cos 2
2
ln
Ta la i CO
I +
J = ' d
x = x|
8 = -
Vay 1
= i[
(I -J ) + (I + J)] =
Z Lli
436| Tinh
I =
f ^
1 + sin
X
0
1 + cos
X eMx
DH Y duac Hd
Noi
2000
Gidi
Ta CO : I = eMx
0 1 + CO
X
Trang 74Phiiatng phdp : Ta phan tich h a m dudi dau tich phan t h a n h tich,
trong do c6 bleu thufc (tan^x + l)dx = d(tanx) hoac (cot^x + l)dx - d(cot),
hoac ddi bien so' dat t - tanx
Sau day la cac v i du :
DH Y Ha N6i - 2000 Gidi