1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Phương pháp tính tích phân và số phức phần 2

133 241 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 133
Dung lượng 39,28 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Trang 1

292 Tin

h I =

• 7

X sin

X + (

x + 1)

(7

X

sin

x + (x + 1) co

4 _

71

~ 4 0

xcos

- In

1 = I

J o

X sin

X + co

s x 4

h I =

x u = X

Trang 3

) + (x2+ xnx2V77377T )

i + x '

h I =

2tdt = 2xdx

dx

= In -

E sie l Tin

h I =

rl

(1 ^

-1 u >

Trang 5

^ Tinh

1 =

j "

^e'^ Idx

-Gidi

Dat t

= V e"

Vi t

^ +

1 = e" =

> d

x = 2tdt t^

1 =

1

t = V e"

u =

> d

t = (tan^u +

u + 1)

0 tan^

u +

1 du =

V e"

- Id

x =

•4 du

= 2- 2.

^ = 2

-^

[299I Tinh

(2" 9)73

"

2 =

^ t'=

3.2

-2

5

Trang 7

Gidi

Da

t t = 1

- X

=

>d

t = -

- tf

-

3(

1 t)^

- (1

- t) +

1

= -2t^

£

^2x^

- Sx

^

x + Idx = ^ ^-(

2t

^ St^

- t +

Su

y ra : 2

1 =

0 =

> I = 0 <=

> I =

^2t^

- St

^

t + Idt = 0

Jo

soil Ti nh

Ta

CO :

I =

Gidi

0 dx

fO

1 + V-x(l + x) "'-

^

dx

1 + 1

V4

4 1-

2 +

cos u

du

2p

n — =>

d

u = '^^^

1 +

e

Do

i ca

Trang 9

-2 + ^

305| Tin

-> d

x = -

=costd

td

t

fO l + cos2

t

V3 J td

t =

• ^

2 V

3 J (1 + co

s 2t)d

t

2 (

h I = ''Vx^

2x

-^ +xdx

- D^d

x = f

^Vx{

x)dx+ fVxC

l-

x-Dd

X2 dx - rl

2

x^dx +

4

2 i = -x

= 8

Trang 11

CO

: I =

Gidi

f3

3 + lnx

dx

l2 =

f3

I

nx , I

3 ,3

-d

x = + I

310 Tin

h I = In

x

Jl x(

2 + Inx

f -d

x

DHKhd'i B -2010

Gidi

Dat u = In

x =

> d

u = —

X

• 1

* 2 + (2 +

3

- (In

2 + 1) =

In

1

3

ill] Tin

h I = fe^

In

^x

'I xV ln

x +

1

dx

1

fx =

X = e

Gidi

t^ = Inx +

a t

^ - 1 = In

Trang 13

dt

t2

.4 -1

t

2dt

= 2t

2

315| Tinh

I = j

j x^Va

^ x^

-dx (a > 0)

£>// Su phqm Ha

Ngi +

CD Hdi quan -

1999

Gidi

Dat X = asin

t vd

i t

e

dx acostdt

^d -s in

l-^ r , sin4

" +

1 « = e

" +

1 ^ 2 td te Mx =>

I 317 I

Tinh va bi^n luan theo tham

so difdn

g a , b : I = f

- 1980

Trang 14

De h a m f(x) k h a tich t r e n [-a; a] t h i f(x) phai lien tuc t r e n [-a; a]

x = - a

Do do : I =

t =

dx , b |

Trang 15

Vay I =

I = -t°.t

" ^

0 Tinh

1

= > 2ud

u = e^d

x

x =

l n2

x =

0

• I n

^

I =

2 .V3

(u^ l)du =

CD Giao thong Van

tdi -2000

Gidi

Ta

CO :

^x^Vl + 3x^

> =

1 + 3x* =

> 2td

t = 2 4x

xi

«V iT 37

-dx

(a > 0)

Trang 16

u = 1

u = 0

Trang 17

I = fe V

2 +

nx ^ 1 f

i

dx = -

1 2

x 2 V2

+ ud

u = —

2

(2 + u)

2 3

= -(

3V3

-2 V2

I

/•In 10

p^d

x

Cho so thuc

b >

ln2

Ti nh

J = , v

2

DH Quoc gia TP.HCM

- 1999

Dat u =:

e"

- 2

Doi ca

n X = I

x

u = e

^"

-2 = 1 0-

2 =

u = e"

-2

Va

y J = (•In 10 e^dx

•8 du

3

-K — =

i 2 e''-2

4

(e''

2)3

Suy r

a li

m J = li

m —

b^

.l n2 b ->

ln

2 2 4- (e '' -2 )3

= -.

4 = 6

i

25 T in

h I = tan

X

Jo (

4 co

s X- si

n x ) co

s X

•dx

Gidi

Ta CO : I tan

X -dx

= tan

x

(4 cos X

- si

n x ) co

s x Jo

(4

- ta

n x ) cos

^ x

X =

0

Dat u = tan

x

= >

du =

dx

CO S^

X Doi ca

n

7 1

=>

X = —

nx

• 3 (4 cos X

- si

n x ) co

s x -dx =

• 1 udu -1 f- 1-

- 4 = -

u

J o

J o u

- 4 -4

1n (u -4 )

= -1 -4

h I =

rr si n X + co

s x

J o 3 + si

n 2

x

Trang 19

-x

l + 2cos3

a cos4

x + cos2x = 2cos3xcosx

Suy r

a : cos5x - cos4x =

(cos2x cosx) +

2cos3x(cos2x cosx)

-= (cos2

x cosx)(l +

2cos3x)

J,

cos5x-cos4x (cos2x -

Vay

I2 =

W

dx = »

TT

- T

17

x + cos5x - cos4x ,

-J2 r ]=

Vay 1

= 8

dx =

V2 -V

rz xco

s X

+

cos8x cos7x

Gidi

(4

X C OS

X + C OS

8x cos 7

-x

1 +

2 C OS

5x

dx

X CO S

-x

l +

dx

Trang 20

Suy r a : cos8x - cos7x = (cos3x - cos2x) + 2cos5x(cos3x - cos2x)

= (cos3x - cos2x)(l + 2cos5x)

Trang 21

1 = '1 udu

• 1 udu ( •]

Jo

4 -u

0

u -4

u

4

= 4 1n

331 Tin

h I =

1-3 Vl

t t

hi -1 < x < 1 nhimg

d da

y 0 < x < 3 V

e 3 = sin

t

Do d

o tin

t khon

g ducfc

332I

Tin

h I =

- cos

dx

CD Hdi quan -

1999

7 1

Jo cos x :dx =

V8 -2 si n2

x V 2

x =

> d

u = cosxdx

Dat u =

h I =

1 ^ sin2x

° Vcos^

x + 4sin^x

Trang 23

1

(-x^ + l)dx +

1

—+

2x2-3x

Vay I =

Gidi

Dat f(x ) =

- 2

x +

m c

6 A ' =

1

m

Khi m > 1 <=>

A' = 1- m < 0 =>

I(m)

=

x ^ 2x +

m

X 2 X

-= m

- —

Trang 25

Isssj Tin

h tic

h pha

n I = £

I339I

Tinh

|d

x

DH Quo'c gia TP.HCM

- 1991 + DH

Y duac TP.HCM -

1996

Gidi

* Kh

i a < 0 t

hi x

- a > 0 Vx

e [0

; 1]

Vay

1(a

) = x

|x-a

|dx+

xlx-ald

+ (x

^ ax)dx

i a > 1

hi x

- a < 0 Vx

e [0

; 1]

3

a _

1

2 3

Trang 26

fix) - g(x)

+ 0 0

0 Vay 1 = |f(x)-g(x)|dx = | f ( x ) - g ( x ) | d x + f ^ | f ( x ) - g ( x ) l d x

Trang 27

(X S OD - ) + XS OO :

2

11

+ Xp (X U TS - ) "

f = xp |X U TS

^aisgyNg =

I

^p

^S OD /

-

;p

i S OO J = :^

K-U

= X UB D log

Trang 28

11-Do do I = - ^ |sin t| dt = - J ^ |sin t| dt + - ^ jgin t| dt

Trang 29

I =

A /1 + cos 2xd

x

DH Thuy Igi -

1997

Ta

C O

: I =

Gidi

Vl + COS2xd

x =

f V2cos

^ xd

x = ("'A /2 cosx

-x = V2 si

n x

2 V2 si

cosx 0 Vsin

xdx

DH Bach khoa Ha

: I =

|cosx| Vsi

n xd

x + „ |co

Vi ha

m s

o f(x) = x"

-x

^ -1

2

Gidi

la ha

m so' chSn, lie

f 1

dx

-1 x

^ x^ -

12

1 xd

x

0 x^ - x^ -

12

Da

t t = x

^ =

> d

t =

2xdx

Trang 31

- cos

^ x dx = 2

p

cos x-y/co

s x (l - cos^

= cos

x

= :>

2tdt = - si nx

2t dt ) =

0

5

350| Tin

h I =

f2

co sx

dx

0 V

2 + cos 2

x

DHYHaNoi -1996

Gidi

Taco: 1=

f i_

t vdt

i

t e 0;

^

2 V2

cosxdx = A

°'

^^

^' V 5

co st

dt V2

* Va

a-si n^

t) 2

\35l\h I =

• o C OS X

+ s in

t 2x in + s Va 4 7

D/

/ Tdi chinh Ke

todn

1999

Trang 33

a) Ne

u m, n

1 - co

s 2x

2

1 + cos 2

X

= , cos

t t = sin

a am, da

t t = tan

x hoa

c t = cotx

53 Tin

h I =

2 cos* xd

x

DH Sa phqm TP.HCM

s 4

dx

- x + — sin 2

x + — si

n 4

2

_ 37

DH Quoc gia TP.HCM

4 2

(l-cos2x )Mx= - 4 J 0

— 2 cos 2

x + — co

2

2 (1 + COS 4x)dx =

m

271 4 U

7 1

4

Trang 34

356| Cho I = 2 cos^ X cos^ 2 x d x ; J = 2 sin^ X cos^ 2xdx

Trang 35

358 Tin

h I = 2

sin^ X CDs'* xd

x ,

DH Ngoai nga Ha

= - (

1 - co

s 2x)(

l + 2 cos 2

x

1 r

1 1 ^ — co s 4x x - co cos 2 1 + -

V4y I

= 1

+ - CO S

2x cos 4

-x — cos 6

dx

— x + — sin 2

s 4xd

x =

- M (cos 4

^ ° x

- cos

* x sin

* x)dx

DH Sa pham Hd

Ngi - 2000

168

Trang 36

Gidi

I = 2 (cos^° X + sin^° X - cos"* x sin^ x)dx

2 [cos^° X + sin'" X - CDs'* x sin'* x(sin^ x + cos^ x)]dx

2 [cos^ x(cos^ x - sin'' x) + sin^ x(sin'' x - cos'' x)]dx

2 [cos® x(cos'' X - sin^ x) - sin® x(cos^ x - sin^ x)]dx

2 (cos* x - sin* xXcos® x - sin® x)dx

36ll Tinh I = 2 cos 2x(sin'' x + cos* x)dx

DH Bach khoa Hd Noi - 1998 Gidi

Ta CO : fix) = cos2x(sin''x + cos'^x) = cos2x(l - 2sin^xcos^x)

= cos2x l - - s i n 2 2x

Trang 37

f(x) =

C OS

x + — co

i

62 Tin

h I =

2 sin^

xdx,

Ta

CO

: I =

2 sin^

xdx =

Gidi

2

(1-

2 _ 2

~ 3

laesl

Tin

h I =

sin* x sin xdx =

(l

-t 2) 2d t=

f

\l-2t2+t'')d

+ -

- — ~ 1 3 5

5 •

Tin

h I=

= f " sin^

° x si

n xd

x =

f "

(1 cos^

x)^

sin

Trang 38

Dat t = cosx => dt = -sinxdx

Trang 39

Gidi

Dat u = sin

x =

> d

u = cosxdx

2

sin^ x cos^ xd

x = ^ sj^

3 5

1 1 _2_

3 5 " 1

5

Tin

h I =

2

sin'* x cos^ xd

x

Gidi

I =

2 sin"* X cos^ X = 2

sin"* x(l - sin^ x)

l-t2 )2 dt =

(t"

-2t^

+t^

h I=

dt =

dx

cos^ x Doi ca

h I =

Trang 41

g (1

- si

n x) co

d(sin x

)

ln|sin X 1-

2

374 Tin

h I =

-l

n

3 2

= I

n 3 + -

3

37 5I

Tinh I =

X

dx

=>

du = sin xd

x cos^ x

cos^ x

V

= tan

X

Trang 42

2 Cho cac so thirc ai, 3.2, a„ thoa :

aiCosx + a2Cos2x + a3Cos3x + + anCosnx = 0, Vx € [0; 2n]

Hay siir dung ket qua tren T i n h ai, 32, &„

DH Qudc gla TP.HCM -A/1999

Trang 43

t T(x) = aicosx

+

a 2C os 2x +

+ a nC os nx = 0

o coskx

(aiCOSx + a2 Co s2

x + + a

jx cos jxdx

= T

Vay tCr (*

7t

377 Chufn

g min

h L =

2 cos

" X cos(

n + 2)xdx =

0 , Vn

- sin(

n + l)

x si

n x] d

x

2 cGs

(n + l)

x si

n x cos" xd

x

Da

t

u = sin(n + l)x => d

u = (n + 1) cos(

n + l)xdx

dv = sin

x cos

" xd

x =

> v = -

co s"

^ X

2 +

2 cos(

n + Dxcos"""^

0

+ I

i

Vay In

= I

i I2

= 0

,V

n e N

Tin

h I =

2 si

n 2x(l + sin

l + cos x)

^ d

DH Ngoai thuong -

1999

Da

t t = 1 + sin^

Trang 44

Dat t = 1 + cosx ^ dt = -sinxdx Doi can

Ta CO : cos2x = cos^x - sin^x = (cosx - sinxXcosx + sinx)

Dat t = sinx + cosx + 2 => dt = (cosx - sinx)dx

Trang 45

Ill

Tinh

I =

•- sin

dx

HV Ngan hang -

D/2000

Ta

CO

: I =

^ 2 sin 2x(2cos'^

x 1)

x =

> d

t = -sin2x

I =

|[

2(

l)-l](

t d

t) r2

(2t-3)

•dt ^ (2t-31nt)

h I =

dx

6 sm X s

in

X + —

6

DHLudt Hd Ndi -2000

m X si

n X COS

+ co

s X

= — sin

x(V3

sin

x + cos x

2 I

n

r

v3 + cot

x V3 +

n 2V3

= ln

|383 Chutn

g min

u

cos mx cos nxd

x = sin

Trang 46

Ta CO cos nix cos nxdx = —

Vay \ cos^ x cos 7xdx =

Trang 47

2 :

I = R(sin

x, cosx)d

x vd

i R l

a ham hufu t

ti chiJ

a sinx, cos

R

(sinx, cosx) t

hi da

t t = cos

x

2 Ne

u R

(sinx, -cosx) =

R

(sinx, cosx) t

hi da

t t = sin

x

3 Ne

u R

(-sinx, -cosx) =

R

(sinx, cosx) t

hi da

t t = tan

2

Luc d

o sin

x 2t

-t^

l-' 1 + t

-1 d

x

385| Tin

h I =

~ 4 sin^ xd

x

0 1 +

cos x

DH SiC pham TP.HCM

- 1994

Giai

Nhan

xet R

(-sinx, cosx) =

R

(sinx, cosx)

Da

t t = cos

x

= :>

d

t = -sinxd

x Do

C OS

38

^ Tin

h I =

ma

1999

Giai

Nh an

xet :

R

(sinx, -cosx) =

R

(sinx, cosx)

Trang 48

Dat t = sinx => dt = cosxdx Ddi can

Trang 49

Gidi

Dat t =

Ddi ca

n

tan —

1 2dt

-I =

1 +

0 (

l + t^)

h I _ f

B -2000

Gidi

Ta

CO :

sin xd

x sin

CO S^

X

•| d(cosx)

3

- CO

3

390| Tin

h I

JO sin^

X

— d

DH Quoc gia Ha

Ngi -1997

Dat t = cos

x

Gidi

dt = -sinxd

x Doi ca

n

X = —

q -cos

^ x) si

n xd

x _

f » (1 - t^

)(-dt)

0

•of

1 1-1

+ CO S^

X

2 ^

1 + t^

t^

+1

dt =

1

391 Tin

h I = r2

C OS

xd

x

- ~ (1 C0 SX )'

Trang 51

X

\D + ; r

(^P-)

;3 uis + X

5

,soD + ; —

= x

p Xg

U TS +

X

X

, UI

S +

X

0 = %

X

0-X

, UT

X z

- = ;p <

^ -"

- X7 U TS

XZSOD

+ X

X

+ X S OD

OD

= Xp

(X +

X SO

O

X j,SO0 ) g

X

+ X

S OD

- X j SO D)

[I

(T +

X gS OD )]

£ XPX „ SO

D

-= I

:

03

Trang 52

Suy ra : 21 = I + I = 1 X + Sin X H X + cos X

Trang 53

J

-J o 2t +

l

,2Vt2 +t 2Vt^

Tt, (it = V2 - ln(>,/

2 + 1)

Vay I cos2x

+ co

s X + 2

2 :dx =

- +l

- V

2 + ln(V

i 4£

l^

iiLl

£^

dx

3 + sin 2x

Gidi

Ta

CO

: I =

~ si

n X + cos

Dat u = sin

x cosx =

-> d

u = (cosx + sinx)dx

fO

du -0

du

-14-u'

-1

u^

-4

-

In

u -2

1

=

[ '"

-J :^

4t 4(

t + 1) 2(

t + 1)^

ln

398| Tin

h I =

dx

1 X

(x2012 ,

1)

Trang 55

400| Tin

h I =

« In

Ta

CO

: I =

• « In

X

1

1 x^

-In^

X

dx =

Gidi

re In

X

dx

Dat u =

In

X

(1-lnx

^ du

h I =

• e In

X

+ In

X

1 (In

X +

X +

if

dx

• e In

X

+ In

X

•1 (In

In

X +

1

dt = In

X

(ln

x + 1)^

ri

_dt_

8 (e

+ 2f

402I Tin

h I = 1 x^ + tan^ x

-i l + x

^ dx

Ta

CO :

* Tin

h I,

-U + x

^ -dx = -1 x^

-x

^+

^

l-1 + x

Trang 57

404 Tin

h I =

• s

-m X ,

•^9 +

4 cos

X

Gidi

Dat u = cos

x d

u = -sinxdx

Doi ca

n

K

X = —

a = —

t +

1 2 (•"

4 3-

dt =

- t 6 0

I = — vo

i ta

n a = -

405 Tin

h I = cos xd

Da

t t = sin

dt

X = —

-I = (ln

|t

-3

ln

|-|t

-2

|) r

h I 'i^^-'Sxd

x

Jo cos

X +

1

DH Quoc gia TP.HCM

Trang 58

sinmx.cosnx = — [sin(m + n)x + sin(m - n)x]

2 sinmxcosnx = — sin2nx

2n

neu m ?^ n

neu m = n

Trang 59

x = —

x =

0 Vm, n

x

-7 1

h I =

'2 cosxd

x

" V

l + cos^x

DH Da Ndng -

t u = sin

x =

> d

u = cosxdx

=

fi

du

V 2

^

du = costd

t

2 = 2

- 2si

n t = 2(

1 sin

-^) = 2cosn

4

t =

0

Vay 1 = V2 costd

'0

4sinxd

DH Thuang mai -

4

Nn3

o

sin xdx

sm

X + -

4J

Doi bien, da

t t=

4

X:

=t -^

4

Trang 61

h I =

2é'"''cosxdx +

^cos^xdx

2e

"'"''d(sinx) +

- 2(i + cos2x)dx =

h I =

2 ế" "

si

n x cos'^ xd

x

DH Kien true Ha

n

I = -

h I

-i

- 3 sin

X +

4 cos x ,

5

DH Thuy Igi -AI2000

Gidi

I =

f- 3sin

x + 4cosx

Ii = I2 =

0 3sin'^

x -dx

dx =

0 3sin^

X +

4 cos^ x

0 dt

0 3 + cos

^

X

-13 + 1^

eVs

2 d(sinx)

Trang 63

- sin

X , , ,

^ d

x =

- I

n cos

-l

71 ,

V 2I — In 4 2 — +

dx

0

2 cos^

4 0 X =

u =

a vd

=-

sU

1996

Dat t = cos

x

Gidi

dt = -sintd

4 -(

co

1-s x) si

n xd

x _ ^

^ 1 + cos'

* X l

(l-t

^)

dt

1

1+t

^

Trang 64

Lai dat u = - + t => du =

t Doi can

dt

t = 1

u = 2 3V2

Trang 65

422 Tin

h I =

1 + sin 2x + co

s 2

x ,

sin X + co s

X

BH Nong nghiep 1

Ha Nqi

- 1998

Ta c6 :

Gidi

1 + sin 2x + co

s 2

x sin

^ x + cos

^ x + cos

^ x

- sin

^ x + 2

sin

x co

s x

sin X + co s

X sin

X + co s

X

2cos x + 2 si nx co sx 2cos x(co

s x + si

n x )

= 2cos

Vay 1

^ Ti nh l=

f

i '^

"^

^^

^ ,

•'0 ll -7 si nx -c os

^ x

CD Hdi quan -

1998

Gidi

Ta CO : I = cos xd

x cos xd

x

0 1

1 7 si nx

x d

u = cosxdx

0 sin

X

7 si n

n 3 u-

2 so ' a , b sao cho : 1-

x

a b

x • • +

(x + l)(x^

+1)

X +

1 +

1 Vx

*

-1

b) Tin

h I = 2 (1 - sin x) co

s xd

x

0 (1 + sin x)(2 - cos^ x )

BHAn ninh -1999

a)

Gidi

Ta CO :

1

x = a(x^ + 1) + bx(x + 1 )

1

x = (a + b)x

^ + bx + a

Trang 66

Suyra j!h(x)dx

• + •

(2 + sin x)^ (2 + sin x)^ (2 + sin x)

DH Bach khoa Ha Noi - 1999

Trang 67

|426| Ti

m A , B , C sao cho

si nx

- cos

x +

1 = A (s in

x + 2cosx + 3 ) + B(cosx

- 2s in

x) +

C

DL TB

v ao d

o, ti nh

I =

r::

s in

-co sx + 1

Gidi

Ta

C O

: s in

x cosx + 1 = A (s in

-x + 2cosx + 3 ) + B(cosx

- 2B )s in

x + ( 2A + B)cos

x + 3

A +

C

A 2

-B =

1

2A + B = -

1

3A + C = 1

A = -

B = -

1 B

(c os

X

2 si

n x)

= A + + + 3 s x 2 co X + sin

Va

y 1=

, 5

J

^d x-

^ 5 0sin

X +

2 co

s x + 3 s in

x + 2 co sx + 3

X

5

2

3 ,.

„ s In — m

0

o

1=

_ JL _3 _3 (i n4 _i n5 )^

8

10

5 5

5 (*)

Ti nh

I =

dx

Da

t t = ta

n

-2

0

s in

X +

2cosx + 3 1/

dt = -

2

ta n2 -

+ l

dx dx

= 2d

n

71

X = —

t^

1-) „

• 'o t2

^

1 + t

^

La

i da

t t + 1 = 2t an

u

dt = 2 (t an

^u + l )d

u

Trang 68

4 sin X + 3 cos x + 5 4 sin x + 3 cos x + 5 dx

Trang 69

1 d

t

1 + t^

+ 5

0 2t

^ + 8t +

^ t + 2

XT- T

1

,9

1

Vay 1=

- + ln- +

428 Tin

h I =

dx

0

(sin

x + 2cosx)^

DH Su pham TP.HCM

-D/2001

Gidi

Kh

ai trie

n mau, chi

a t

u T mi

x =

> d

t = (tan^x +

l)dx Doi ca

n

I =

fi d

x -1

h I = ("

sin 4xdx

0 sin

^ X + cos

^ X

DH Ngoai thuang -

A/2001

Ta

CO

: f(x) =

Gidi

sin4x s

in4x

sin

«x + cos

«x i

_3 si n2

f lie

n tu

c tre

n doa

n hay I

ton t

ai

Trang 71

x + cosx =i d

t = (cosx - sinx)dx

t =

1 + sin2x

1

t =

1

t = ^

Vay I = -

3 + 4sinx - cos2x

sin2x

Gidi

3 + 4sinx - cos2x *

sin^ x + 2sin

x =

> d

t = cosxdx Do

i ca

n

Nen I =

• 1 tdt _

fH + 1 -1

sin2x ,

Trang 72

433| T i n h I =

Gidi CACH i : Ta CO : - ^ l ^ ^ ^ d x = -

Trang 73

Va , - X

tan

X tan

xdx + -

* 2 cos^

X -dx = -

2 J

o 3 tan^

xdx = -

2 3(tan

^ x + l )d

x-

pd

x) 3

1 0 ^

2

I

3

2

Suy r

a : I = Ij + I2 = -

-I n

x 6

2

7 1

43 5I Ti nh

I =

cos 2

x

sin 2x + cos 2

x

•dx

DH Thily sdn Nha

Trang

2001

Gidi

Ta da

t J=

[

8 sin 2x

0 sin 2x + cos 2

x -dx

Ta

CO

I

J = f- (c

os 2

x sin 2x)dx 1 r -d (s in 2x + cos 2x

-)

0 sin 2x + cos 2

x 2

J 0 sin 2x + cos 2

2

ln

Ta la i CO

I +

J = ' d

x = x|

8 = -

Vay 1

= i[

(I -J ) + (I + J)] =

Z Lli

436| Tinh

I =

f ^

1 + sin

X

0

1 + cos

X eMx

DH Y duac Hd

Noi

2000

Gidi

Ta CO : I = eMx

0 1 + CO

X

Trang 74

Phiiatng phdp : Ta phan tich h a m dudi dau tich phan t h a n h tich,

trong do c6 bleu thufc (tan^x + l)dx = d(tanx) hoac (cot^x + l)dx - d(cot),

hoac ddi bien so' dat t - tanx

Sau day la cac v i du :

DH Y Ha N6i - 2000 Gidi

Ngày đăng: 11/05/2016, 19:28

TỪ KHÓA LIÊN QUAN

w