1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Phương pháp tính tích phân và số phức phần 1

133 200 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 133
Dung lượng 38,82 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

HO Chi JViinhJ PHUONG PHAP TINH... Vay fx khon.

Trang 1

515.076

iGV cbuyen Toan Trung tam luyen thi Vinh Viin - TP HO Chi JViinhJ

PHUONG PHAP TINH

Trang 2

(Tdi ban idn thii nhat, c6 siia chita vd bo sung)

N H A X U A T B A N D A I H O C Q U O C G I A H A N O I

Trang 3

T ] T i n h dao ham cua F(x) = x.lnx - x, roi suy ra nguyen ham ciia f(x) = Inx

Gidi

T a CO : F(x) = x.lnx - x = x(lnx - 1)

Trang 4

Suy r

a : F'(x) = [x(lnx -

Vay the

o din

h nghI

a cu

a nguye

n ha

m, nguye

n ha

m cii

a f(x) =

x +

C

~2\h dao ha

m cii

a F(x ) = x^lnx, ro

n F'(x) =

2xlnx

+ — x^ =

2xlnx

+ x = f(x

) +

x

Vay ' F

'(x)dx=

— +

C = x^lnx - — +

Vay mo

t nguye

n ha

m cii

a f(x) l

a F(x) = xllnx

~3\h nguyen

h am ciia f(x) - xVx +

1 bie

t F(0 ) =

x +

1

Vay

= ( X

= f

{x + l

)2 dx -

("(x + l

x + 1 )- f (X

+ l

)2 d(

x

+ l)

2

2

-= -(

X

+

l)

2 (X + 1) 2

+

C

5 3

= -(

-x +

l +

C

Hay F(x) =

(x + l)V

nen ta

CO :

2

= (0 + 1)^

Vo +

1

- (

0 + 1)V0 + 1

(x + D^V

-x + l (x + l)V

Trang 5

2 Chufng m i n h r k n g G(x) = - ( 1 + x)e"'' la mot nguyen h a m cua

g(x) = x.e'" Roi suy ra nguyen h a m cua k(x) = (x - De""

Gidi

1 Ta CO : F'(x) = e" + e^Cx -2) = e^lx - 1) = f(x)

Vay F(x) la mot nguyen h a m cua f(x)

2 Ta CO : G(x) = - ( 1 + x)e"''

Suy ra : G'(x) = -e"" + (1 + x)e-'' = e"\ = g(x)

Vay G(x) la mot nguyen h a m ciia g(x)

Suy ra nguyen h a m cua k(x) = (x - l)e~'' = xe"" - e"'' = g(x) - e"

N e n k(x)dx = Jg(x)dx - je-^dx = G(x) + e"" + C

Vay nguyen h a m cua k(x) \k K(x) = -xe"" + C

Trang 6

~G\h da

o hk

m cu

a (p(x ) = (ax + b)e'' Ro

Gidi

TiX

gia thie

t (p(x ) =

(ax + b)e''

Suy r

a : (p'(x) =

(a +

ax + b)e''

a cho

n a = -

1, b = 1

Thi <p(x ) =

(-X + De" =

> (p'(x ) =

a F(x ) = (-x + De" +

C

~T\g min

h F(x ) = In| x + Vx

^ +

K | la mot nguye

n ha

m cu

a

fix) = , ^

tren R

Vx

^+

K Gidi

x + Vx^

+ K

Vx^

+ K(

n R

sl

Cho ha

m s o

o ha

m so ' F(x ) = (ax^ +

bx + c)

Dai hoc

Su pham

Ki thudt TP.HCM

Gidi

Ta

C O : F'(x) =

(2ax + b)

V3

-x

(ax^ +

bx + c)

2V3-X

1

2

2V3-X

1 [(2ax + b).2(3-x) -

(ax' +

bx + c)]

[-5ax

^ + (12a - 3b)x + 6b -

i x < 3

o F'(x ) =

c = 2(3 - x)x V

x <

3

6

Trang 7

Vay F'(x) la mot nguyen h a m cua f(x) vdi Vx ^ ± a

1 neu x = 0 ( x - D e ^ + l

Trang 8

F'(0) = lim ^ ^

= lim ^ 2x o x^ .0 X-

(Quy t^

c L'Hopital)

TiT (1), (2), t

a su

y r

a F(x) l

a nguye

n ham cua f(x) tre

n R

Vay FXO) =

lim — =

- = fTO) 2 2 o x^

(2)

IT] Tin

h da

o ham cua F(x) = (x^

- l)ln

Suy ra nguyen

ham cua f(x) = x

: F(x) = (x^

- l)ln

11

+ x | - x^ln | x

I ^-1 x 1 + + 1 I x 2xln F'(x) = ra Suy

x +

1

- 2xln IX

-= 2xln IX + 1

i

1 2xln | x | v6

-i x

0, x ^ 1

Taco: f(x) = xln

l

fl + x^ il

1X1

]

= 2xln

11

+ X

Suy ra ff(x)dx =

[F '(x)d

x + fldx =

ham cua f(x) = x

- Dln

ll + x

| -x

^lnl

o F(x) = e""^

(atan^x + btanx

+ c) l

tan^x tr

x + btanx

+ c) + e''^

[2a(

l + tan^

x)tan

Trang 9

<=> e 2atan^ x + (yl2a + b ) t a n 2 x + (^^b + 2a)tanx + (V2c + b)

(do quy t i c L'Hopital)

(1)

(2)

Trang 10

im

x -»o-

x

-0

X

FX O- )=

-l -l im l^

^^

x->0

" X -1

^ F'iOl

=

1

l im

1

Vay

F'(0*

) = F'(0"

y r

a F(x ) l

a nguye

n ha

m cii

a f(x ) tre

n R

(3)

14

I Churngmin

h F(x ) =

— I

n x 2 4

(X >

X

(x >

0)

0

(x =

0)

Dai hoc Yduac TP.HCM

x + = xln

ta

CO

: F(O^

) = l im ^^

" "^

^^

^ ^ = li

* X

= lim — I n

X

- li

m — = l im -

0

x-^O

* 2 x-

yO

* 4 x^

.0

* 2

(1)

= li

= li

m x^o^

V 2)

Tix

(1), (2 ) t

a ke

t lua

n F(x ) l

a nguye

r

= 0

= f(x )

(2)

I hkm

cua fix ) tre

^x^ + 2

^R

+ lj

x^-1 xUl

10

Trang 11

- 2 x + C v d i X < - 1 x^ + C v d i - 1 < X < 1 2x + C v d i X > 1

Trang 12

I Ti

m h

o nguye

n ha

m cii

a f(x) = | x |

-xdx neu

x <

0 + C

neu

X >

0

+ C neu

X <

19

I Ti

m h

o nguye

n ha

m cii

a f(x) =

x i x |

Ta

CO

: Jx

-x^dx neu

m cii

a f(x) = (x +

\x\f

Ta

CO :

Gidi

(x+

I X

I )2dx = Jlx

^ + 2x

I X I +x2 )dx

' 2

4x 4x d

x = + C

X <

0

21 I Tim ho nguyen

ham ciia f(x) = cos

X

Dai hoc Yduac TP.HCM

-2001 -He nhdn

Gidi

Ta

CO

: F(x) =

f

• CO

S xd

x ' d(si

n x)

22I Ti

m h

o nguye

n ha

f(x)dx =

Gidi

2

\3 2\

53

MX = f

(2

.32.5^)''d

x = 2250"

hi(2250)

+ C

1 2

Trang 13

23 I Tim ho nguyen ham cua :

25 \m ho nguyen ham cua f(x) = ——

Trang 14

28] Ti

m h

o nguye

n ha

m cu

a fix) = Ve" +

e

2

DH Y Thai Binh

2 =

e2

- e

2 e2

- e

2

f(x) = f(x) =

X — > neu — 2 2

' X

X — < neu — 2 2

ho nguye

n ha

m cii

a f(x) -Inex

1

+ xln

(1

+ xlnx)'d

x = (l.ln

x + — x)d

x X

= (In

x + l)dx = Inex.d

x

Vay f(x)dx =

Inex.dx rd(l + xlnx)

x

f (x)d

x = I

ho nguye

n ha

m cu

a f(x) = x(l - x)-°

DH Quoc gia Ha

1) +1](

1

- x)^

" = (x -

Trang 15

Nen f ( x ) d x = ( x - l ) 2 M x + ( x - l ) 2 ° d x

( x - l ) ^ M ( x - l ) + ( x - l ) 2 ° d ( x - l ) = ( X - 1 ) 2 2 ( x - l ) 2 1

, 2 0 0 1

DH Quoc gia Ha Ngi - 2000

b) Dat u = x^ + 1 So sanh hai ket qua t i m ducfc

Dai hoc Tong hap TP.HCM ~ A/1977 Gidi

a) Dat X = tana => dx = (tan^a + l)da, thi :

= — sin* a + C = - (tan* a cos* a) + C

Trang 16

b)

Da

t

u = + 1

=>

du =

-2 -3 o.

1

1 l-2u,^

l(

x^

+2x^

+1

4(x2

+

if

+ C + -

+ C

-

Ci

- C,

Ii

I2

+ C

- Ci

33

I T

im ho nguyen

ham cua

fix) =

Vx^ + x"" +

2

Gidi

Ta

CO :

f(x)dx =

I x2

+ X-2

I

Vx^ +x-^

+2

<ix = V(x2+X

-*

1

\ + x -

^ ) d x

=hilx

l — + C

-= Inix

t , = ln(x.Vx2

+3) +

C Tin

h F(x) = fVx2 + 3dx

DHYHaNoi -1999

Gidi

Fix) =

[Vx2 + 3dx = xVx2 +

3 jx

-d(Vx2 + 3) (Tic

h phan

- fV77

-(x) +

31n(xVx2 +3) +

(xV(x

2 + 3) +

Trang 17

35 I T i m ho nguyen h a m cua fix) =

Trang 18

-l

(x^ + 5x + IXx^

- 3

x +

1)'

DH Quoc gia Hd

Ngi A/2001

-Giai

Ta

CO :

x^

-l

(x^ + 5x + IXx^

- 3

x +

1) 1

2x +

5 1

2x-

1

F(x)=

8 2x + 5

J

- 1 5x + X +2x -

3 ,

-In 1 3x + X x-" -

ho nguye

n ham cua f(x) =

xl

n X ln(l

n x )

Gidi

Ta C O

: (hi(lnx))' =

Ne

n f(x)dx =

xl

nx

dx (•[In(lnx)]'

xlnx

hi(

ln x) hi(ln

x)

= In(lnx) +

C

40 I

Tim

ho nguye

n ham cua f(x) = (x +

1)

xQ + xe"

)

Gidi

Ta

CO :

(1

+ xe")' = e^

C x +

1)

(x + Ddx x = f (x)d

xd + xe'') e^Cx + Ddx

xe^Cl + xe") dCl +

xe")

[1

+ xe

^ IJ

-U +

xe"]

[(l + xe'')-(l + xe''-Dld

Cl + xe") rd(l + xe^ -

18

Trang 20

44] Ch

o hkm so f(x) = 3x^

m cu

a f(x) (x -

CO

: x

^ 3x + 2 = (

x

l)^(

x + 2)

B + Ox^

+ (

A +

B 2C)x + (2A

- 2

B + C)

|

X

-

ll + Inl

ham cua f(x) =

X (l +

2

fix) = —

X^

X (l +

x2)

X^

X l +

+1

fdx fd

x 1 d(x2

+1)

= J_ -Inl

xl + iln(x

2 +

46 I

Tim hp nguyen

ham cua f(x) = —

20

u

Trang 21

Gidi

Ta CO : f (x)dx = x^ + 4x^ + 4 x ^ + 1 dx x ^ - x

X J

x'^ + — + 4 x^

Trang 22

Gidi

Ta

CO :

f(x)dx = xdx

x^

+3x^

+2 [(x^ +

2) (x^

+ 1)

(x^

+ IXx

^ + 2) xdx

2 2

J x^

2 +2) +

C = -

m h

o nguye

n ham cua f(x) = 2-3x'

Gidi

Ta

CO :

f(x)dx =

dx

r d

x

3x

+ c

50

i Ti

m h

o nguye

n ham cua fix) =

-Gidi

Ta

CO :

"f(x)dx = (x* -

l)dx

f [(x

^ 5x + 1) - (x^ - 5x)](x'' -

Ddx

(x^ 5x)(x^

1 f

d(x^

- 5x) 1 fd(x^

-5x

+ D

x^ 5x

+ 1 x -5 x" 5 J + D 5x (x^ - x -5 x''

= i In I x*^

- 5x I

- i In I x^- 5

x +

11

+ C = -

-+ C

51

I Tim ho nguyen

ham cua f(x) =

Trang 24

x = rsm

X + s in

x co

s x

2 + sin

X

Ta

CO

: f(x ) =

Gidi

cos x + si n

X

cos x _ 2 cos x + si

n x cos x

- co

s x

2 + sin x

2 + sin x

cos x(

2 + sin x ) - co

s x cos x

F(x) =

2 + sin

X

-2 + sin

X

dx = X sin 2 +

= sin

x ln(2 + sinx) +

Gidi

sin3x.sin4x _ sinSx sin4

x _ sinSx sin4

-= — [sin5x +

sinSx sin9x +

Vay F(x)

= f (x)dx =

x sin 9

-x + sin x)d

x

- — cos 5

x — co

-s 3

x + — co

x + cos'*x)(sin®x +

Trang 26

F(x) =

dx

cos

X s in

n x

3 sin

^ x sin x(

l - si

n x )

+ C

61 Tim

X s + co X sm ) = a) f(x

X

b) g(x ) = -cos2

x

sin x + co s

X

DH Ngoai thuang -

1999

a) F(x

) =

b) G(x ) = sin

X

- co s

sin

X

+ co s

X

r-d(sin X

J si n

X

+ co s

X

= In sinx + cosx |

J

sin x + co

s x

G(x) sin

x + cosx +

ho nguye

n ha

m cii

a g(x ) = sinx.sin2x.cos5x

DH Bach khoa Ha

n 2x[si

n 6

x sin 4x ] =

- [sin2xsin6

x

= — [cos4x -

cos8x + cos6x -

Vay G(x ) =

— (co

s 4

x cos 8

-x + cos 6

x cos 2x ) d

— si

n 4

x — si

-n 8

x + — si

n 6

x — si

X

1 + sin 2

x

DH Bach khoa Ha

Noi

Ta

C O

: f(x ) = sin

x + cosx)^ o^^^sf

^ ^ - S X CO Z

1

4

Dat t=

x-— o

x = t + —

o d

x =

26

Trang 27

dt (t - l)(3t - 5)

A B

(t - l)(3t - 5) t - 1 3t - 5 1 = A(3t - 5) + B(t - 1)

Trang 28

c= 1 = (3

A + B)t - 5A

- B 3A

+ B = 0

-5A

- B = 1

-

—^

= il n|

- l|

+ i ln

: f(x ) =

x(cos X

- si

n x )

cos x

Vay F(x ) =

cos^ x(co

s X

sin x ) cos

n 1

1 tanx | + C

67 I Tim

ho nguye

n ha

m cu

a fix ) = cos^ x

: f(x ) =

CO S^

X

Gidi

1 + cos 2

x + —

= > d

t =

1 + cos 2

Nen f(x) = t-

Trang 30

2 sin

x

4(

cosx-l) 8

- — In

I cos

x 1

-1 + — I

m h

o nguye

n ham cua f(x) = sin^ x

3 si

n 4

x sin 6x -

3 si

n 2

x

BH SU pham Hd

3(sin4x sin2x) -

sin6x

= 6sinxcos3

x 2sin3x.cos3x =

2cos3x(3sinx sin3x)

-Va ta

CO

sin'^x =

f(x) =

3 sin

4 sin

^ x 8cos3x

8cos^3x

F(x) ^ f(x)dx

=

-co s

3xdx

co s

3x

1

8 J -d(sin 3x) f3

ho nguye

n ham ciia f(x) = hSng so)

DH Xdy dung -

1999

Gidi

^ , „ ,

s in

a CO

S x + si

n x c os

a si

n a co

s x s in a s in

Vay f(x)dx

- si

n a

cos^ x

sin xdx

cos^

X

•d(cos x)

X

sm

a In sin

Gidi

Ta

CO

: f(x) =

- (cos3

x + cosx)sin4x =

- sin4xcos3

x + — sin4xcos

= — (sin7x +

sinx + sin5x +

30

Trang 31

sin x(sin x - x cos x) + cot X + C

DH Bach khoa Ha Noi - 2000

Trang 32

x =

In I sinx I

- 2sin^

x + C

BHNgoqi thiCang -AI2000 3sinx 2 xsinx - Q g , X 4g cos Gidi sm x \ _ 3cosx) „ , „ o Q s x - ) = (4co O : f(x Ta C

Vay f(x)d

x = 4cos^xsin xdx

-3 sin xd

n

71 X

4j

(2 + 2sin2x)

DH Quoc gia Ha

^l

4j d

x + cos

1 — si

3x + si

DH Y TP.HCM -

x + 3sin8xcosx )

32

Trang 34

dx + sin

X

2

tan x.d(ta

n x ) + (sin x + co

s x ) dx

sinx +

C

82 Tim

b) g(x ) = cos^xcos2x

DH Ngoai thuang -

— (cosS

x + 3cosx)cos3x

3 „ n 2 — si x + n 4 — si + + - x (x)dx = Vay f

s 4x

Vay

g(x)dx = - 4

J

, 1 dx + —

2 cos 2

x + —

4 cos 4xd

x =

i X + —

sin 2

x + — si

n 4

x +

83 I Tim

ho nguye

n ha

m cii

a f(x ) = — sm

X

sin

X

+ co s

X

Gidi

Ta

CO :

X

+ co s

Trang 35

Va : cos xdx

sin X + cos X

sin xdx •(cos X - s i n x) sin X + cos x ( s i n x + cosx)

<=> asinx + bcosx = A(c.sinx + d.cosx) + B(c.cosx - d.sinx)

o asinx + bcosx = (Ac -Bd)sinx + (Ad + Bcjcosx

(tan X + l)dx + (cot x + l)dx = tanx - cutx + C

86 I T i m nguyen h a m F(x) ciia fix) = 2 sin 5x + Vx + - sao cho do t h i h a m so

5 f(x) va F(x) c^t nhau t a i m p t diem t r e n true tung

DH Quoc gia Hd Noi - B/1996

Trang 36

Gidi

CO : f(x ) = 2 si n5

x +

V

x + -

5

2 2 /—

3 Vx — x x + s 5 — co x) = F( =>

+ X

Do h

ai d

o t

hi cd

t n ha

u t

ai mo

t d ie

m tr en true tung, ne

n :

F(

0) = f(0)

+ C = - ^ C

87 Ti

m h

o n gu ye

n ha

m c ua f(x) =

e ™'"'sinx

Gidi

Ta

CO :

f(x)dx = |

e ế°'\sin

xdx =

,3 cos X

f

1 \

d(

3c os x) = -

n ha

m c ua f(x) = cos^

X

Gidi

Ta CO : (tanx) ' =

COS^

X

f(

x) dx

=

L^^-^=

fê^^^dCtanx) = ê"" + C

COS^

X

89

„, ,

- f/

X

s m

X + CO S

sm

X

- co s

X

Ta

CO :

f(x)dx =

Gidi

si n

X + CO S

X

>/sin

X cos X

-2

dx = (s in

X - co

s x ) 3d (s

X

- co s

x) 3

3 3/7

^ T „

= +

C =

- >/(s m

X

- co

s x

r + C

n ha

m c ua f(x) =

— n x si

36

Trang 38

t

Da

t Dat

j

* Da

t t = V

[du

= at

^dt

dv = sin

dt v = -

cos t

I = -2t^

cos t + 6

u = t^

Jdu = 2td

t

dv = cos td

t [v

= si

n t

I = -2t

^ co

s t + 6t

^ co

s t + 6t

^ si

n t + 12

dt

cos td

12sint

Trang 39

T I C H P H A N X A C D I N H

K I E N THLfC C d B A N

I T a C O cong thufc Newton - Leipnity

r b

f (x)dx = F(b) - F(a) vdi F(x) la nguyen h a m ciia f(x)

II Tinh chat

Trang 40

96 Tin

h I =

fi xd

x

0

(x^ + 1)^

Gidi

Da

t

t = x' + 1 =>

dt = 2xdx

Dd

i ca

dx r2

h I =

fi

dx

0

(x + I

f

DH Y duac TP.HCM

_dx_

^d(x.l) = lii

2

-2

I = -

I = -;; sin

x cos x , d n

-x,

- sin

x + cos

DH Da Ndng -

2000

Ta

CO

: I =

I

-d (sin

X

+ co

s x) ) s x + co X in (s -

4

Gidi

= -l

n sin

X

+ cos

X

Va

y I = -

ln

l + ln>

/2-ln2 2

Ti

m

A, B sao ch

o f(x) = AsinTtx +

B thoa man :

f '(1) =

Noi

B/1998

Gidi

Ta CO : f(x) = Asinrt

x +

B

f '(x ) = ATTCOSTIX

40

Trang 41

c:> (cos27; - cosO) + B(2 - 0) = 4 « 2B = 4 B = 2

DH Su pham Ki thudt - 1980 Gidi

Trang 42

1

0

x^ + 2x +

)

0

x^ + 2x +

9

+

-ln 2 x^ + 2x +

9

= i + i (l nl 2- ln 9)

f

1

x^ + 3x +

10

0 x^

+2x + 9

)

0

x^ + 2x +

9

= X

+

-ln 2 x^ + 2x + 9

= l.

il nl

1041 Chof(t ) =

4

0

Gidi

• t

f 4

0

(1

- CO S

2xf -

-dx

- 2 cos 2

x + cos^ 2

x + - (1 + cos 4x

dx

-c os 4x

= sin 4t -

0 o sin4t =

8sin2t

2sin2t.cos2t = 8sin2t

< =>

2sin2t(4 cos2t) =

0

sin 2t =

0

cos2t =

4 (v

6 nghi^m )

kit

o sin2

t =

0 c 2t =

kn

o t = —

-2 (104 _sin7ix)dx

BH Giao thong Van

tdi

1998

42

Trang 43

I O T I Tinh I = f ^ (e^" - n sin 7ix)dx

Gidi

Ta C O : I = r 1 (e^" - 7t sin 7Tx)dx =

r e 2 x + C O S 7:x

Trang 44

109 Tinh

I = (2

x co

s x)d

2x)

(1 + cos 2x) - - sin

- sin 2x)dx

3 „ cos2x

2

I—

ll o|

Tin

h da

o ham cua

am so F(x) = I

n ~ ^

c

f 1

- 1 — a : r Suy

Jo x

" +

1

Ta

C O

: F'(x) =

+ l

^

x^ >

-^x + 1 [(x^

+ 1) + V^xJ[(x2 + 1) - V2xl

2-x^

+1

x^ + V2x + 1

Do

do ix

"

-1

0 X^

+

1

dx =

2V2 F(x)

1 , 2-V

2 V2 In 2 + 2V2 '

m) Tin

h I = j

: I =

I =

dx

It

2-

2

- CO S

x)d

x 4

cos'^

xsin

^ x

tan

X

- cot

X

- sin

i=

V3-^

-(

i) = H:^ ^ 3 3 ^

i-44

Trang 46

0

= I M"JJ 8X

1

= 1 = 2J^ [£J^ Z-Zf^ +

8A-X SO

D + X

^O D-

= I

xp

XU TS -

TS

a

X

„U IS -

Z

li

X,

;0 D2

0

- 2 = (

2 u

i

8 ui )

-X =

Z^\

(x3

+ X)u

i • — -

X

=1

XP xS

I

xS + X

0

x3 xS + X

Trang 48

CO

: I =

x2 )

4-0

4-x

^

dx = -

4

= -4.-

In 4 x-

-2

2

dx

124| Cho f(x) = sin

ai so' A, B sao ch

o fix) =

A +

B ' cos

X

- sin

x y

b)

Tin

h I =

" 2

f (x)d

x 0

DH Su pham TP.HCM

- 1995

Gidi

a)

Tim A, B

Ta

CO

: f(x) = sin

X

= A + B

cos

X

+ sm

X

+ (

A B) si

-n x

sin

X

+ cos

l 2

b)

Tin

h I=

X

•dx =

t r

2 COS

X

- sin

X

cos

X

+ sin

X

dx

I =

— X I

n

2 2 cos

X

+ sin

X

7 T

4

125| Tin

h I = f

2

sin 3x

0

cos x +

1 dx

Ta

CO :

Gidi

sin 3

x 3 sin

X +

1

3 sin

(cosx

+1)

Vay 1 =

- si

n 3xd

x _ ^

sin xdx + 2

Trang 50

128 Tinh

I = f- 2cos-

X

Ta CO :

I =

= 2

Gidi

^ 2 cos^

X , „ f ^ cos

^ X.

cos xd

0

1 + sin

X

^2 f

2 co

s x- C'

x) =

2 si n

)

0

1 + sin

X

n 2

1

= 2 (1 ) =

129 Tinh

I = 2 sin^

xdx

BR Bach khoa TP.HCM

- BI2001

Gidi

Ta CO : I = 2 sin^

xdx = 2 (1 - cos^ x ) si

n xd

x

2 c,-

sin xdx +

2 cos^xd(co

s x ) = '^cos^ X

- co s

X 2

2

~

3

130 Tinh

I = 2 xdx

-1

x^

+ 2

DH Tong hap Ha

Noi

1993

Gidi

Ta CO : 2

J 2

n x^

+

2

-1

= (l n6 -l

-n 3 ) =

h bdi : f(x ) =

1

X neu X€

[0

;1

]

0 neu

> 0 thi f(x ) +oo

Vay f(x) khon

f

0 ne'u

X =

0

|l32| Xet si

r kh

a tic

h cu

a fix ) tre

n doa

n [1

; 0 ] vd

i fix ) = ^ -1 neu

Ngày đăng: 11/05/2016, 19:27

TỪ KHÓA LIÊN QUAN

w