HO Chi JViinhJ PHUONG PHAP TINH... Vay fx khon.
Trang 1515.076
iGV cbuyen Toan Trung tam luyen thi Vinh Viin - TP HO Chi JViinhJ
PHUONG PHAP TINH
Trang 2(Tdi ban idn thii nhat, c6 siia chita vd bo sung)
N H A X U A T B A N D A I H O C Q U O C G I A H A N O I
Trang 3T ] T i n h dao ham cua F(x) = x.lnx - x, roi suy ra nguyen ham ciia f(x) = Inx
Gidi
T a CO : F(x) = x.lnx - x = x(lnx - 1)
Trang 4Suy r
a : F'(x) = [x(lnx -
Vay the
o din
h nghI
a cu
a nguye
n ha
m, nguye
n ha
m cii
a f(x) =
x +
C
~2\h dao ha
m cii
a F(x ) = x^lnx, ro
n F'(x) =
2xlnx
+ — x^ =
2xlnx
+ x = f(x
) +
x
Vay ' F
'(x)dx=
— +
C = x^lnx - — +
Vay mo
t nguye
n ha
m cii
a f(x) l
a F(x) = xllnx
~3\h nguyen
h am ciia f(x) - xVx +
1 bie
t F(0 ) =
x +
1
Vay
= ( X
= f
{x + l
)2 dx -
("(x + l
x + 1 )- f (X
+ l
)2 d(
x
+ l)
2
2
-= -(
X
+
l)
2 (X + 1) 2
+
C
5 3
= -(
-x +
l +
C
Hay F(x) =
(x + l)V
nen ta
CO :
2
= (0 + 1)^
Vo +
1
- (
0 + 1)V0 + 1
(x + D^V
-x + l (x + l)V
Trang 52 Chufng m i n h r k n g G(x) = - ( 1 + x)e"'' la mot nguyen h a m cua
g(x) = x.e'" Roi suy ra nguyen h a m cua k(x) = (x - De""
Gidi
1 Ta CO : F'(x) = e" + e^Cx -2) = e^lx - 1) = f(x)
Vay F(x) la mot nguyen h a m cua f(x)
2 Ta CO : G(x) = - ( 1 + x)e"''
Suy ra : G'(x) = -e"" + (1 + x)e-'' = e"\ = g(x)
Vay G(x) la mot nguyen h a m ciia g(x)
Suy ra nguyen h a m cua k(x) = (x - l)e~'' = xe"" - e"'' = g(x) - e"
N e n k(x)dx = Jg(x)dx - je-^dx = G(x) + e"" + C
Vay nguyen h a m cua k(x) \k K(x) = -xe"" + C
Trang 6~G\h da
o hk
m cu
a (p(x ) = (ax + b)e'' Ro
Gidi
TiX
gia thie
t (p(x ) =
(ax + b)e''
Suy r
a : (p'(x) =
(a +
ax + b)e''
a cho
n a = -
1, b = 1
Thi <p(x ) =
(-X + De" =
> (p'(x ) =
a F(x ) = (-x + De" +
C
~T\g min
h F(x ) = In| x + Vx
^ +
K | la mot nguye
n ha
m cu
a
fix) = , ^
tren R
Vx
^+
K Gidi
x + Vx^
+ K
Vx^
+ K(
n R
sl
Cho ha
m s o
o ha
m so ' F(x ) = (ax^ +
bx + c)
Dai hoc
Su pham
Ki thudt TP.HCM
Gidi
Ta
C O : F'(x) =
(2ax + b)
V3
-x
(ax^ +
bx + c)
2V3-X
1
2
2V3-X
1 [(2ax + b).2(3-x) -
(ax' +
bx + c)]
[-5ax
^ + (12a - 3b)x + 6b -
i x < 3
o F'(x ) =
c = 2(3 - x)x V
x <
3
6
Trang 7Vay F'(x) la mot nguyen h a m cua f(x) vdi Vx ^ ± a
1 neu x = 0 ( x - D e ^ + l
Trang 8F'(0) = lim ^ ^
= lim ^ 2x o x^ .0 X-
(Quy t^
c L'Hopital)
TiT (1), (2), t
a su
y r
a F(x) l
a nguye
n ham cua f(x) tre
n R
Vay FXO) =
lim — =
- = fTO) 2 2 o x^
(2)
IT] Tin
h da
o ham cua F(x) = (x^
- l)ln
Suy ra nguyen
ham cua f(x) = x
: F(x) = (x^
- l)ln
11
+ x | - x^ln | x
I ^-1 x 1 + + 1 I x 2xln F'(x) = ra Suy
x +
1
- 2xln IX
-= 2xln IX + 1
i
1 2xln | x | v6
-i x
0, x ^ 1
Taco: f(x) = xln
l
fl + x^ il
1X1
]
= 2xln
11
+ X
Suy ra ff(x)dx =
[F '(x)d
x + fldx =
ham cua f(x) = x
- Dln
ll + x
| -x
^lnl
o F(x) = e""^
(atan^x + btanx
+ c) l
tan^x tr
x + btanx
+ c) + e''^
[2a(
l + tan^
x)tan
Trang 9<=> e 2atan^ x + (yl2a + b ) t a n 2 x + (^^b + 2a)tanx + (V2c + b)
(do quy t i c L'Hopital)
(1)
(2)
Trang 10im
x -»o-
x
-0
X
FX O- )=
-l -l im l^
^^
x->0
" X -1
^ F'iOl
=
1
l im
1
Vay
F'(0*
) = F'(0"
y r
a F(x ) l
a nguye
n ha
m cii
a f(x ) tre
n R
(3)
14
I Churngmin
h F(x ) =
— I
n x 2 4
(X >
X
(x >
0)
0
(x =
0)
Dai hoc Yduac TP.HCM
x + = xln
ta
CO
: F(O^
) = l im ^^
" "^
^^
^ ^ = li
* X
= lim — I n
X
- li
m — = l im -
0
x-^O
* 2 x-
yO
* 4 x^
.0
* 2
(1)
= li
= li
m x^o^
V 2)
Tix
(1), (2 ) t
a ke
t lua
n F(x ) l
a nguye
r
= 0
= f(x )
(2)
I hkm
cua fix ) tre
^x^ + 2
^R
+ lj
x^-1 xUl
10
Trang 11- 2 x + C v d i X < - 1 x^ + C v d i - 1 < X < 1 2x + C v d i X > 1
Trang 12I Ti
m h
o nguye
n ha
m cii
a f(x) = | x |
-xdx neu
x <
0 + C
neu
X >
0
+ C neu
X <
19
I Ti
m h
o nguye
n ha
m cii
a f(x) =
x i x |
Ta
CO
: Jx
-x^dx neu
m cii
a f(x) = (x +
\x\f
Ta
CO :
Gidi
(x+
I X
I )2dx = Jlx
^ + 2x
I X I +x2 )dx
' 2
4x 4x d
x = + C
X <
0
21 I Tim ho nguyen
ham ciia f(x) = cos
X
Dai hoc Yduac TP.HCM
-2001 -He nhdn
Gidi
Ta
CO
: F(x) =
f
• CO
S xd
x ' d(si
n x)
22I Ti
m h
o nguye
n ha
f(x)dx =
Gidi
2
\3 2\
53
MX = f
(2
.32.5^)''d
x = 2250"
hi(2250)
+ C
1 2
Trang 1323 I Tim ho nguyen ham cua :
25 \m ho nguyen ham cua f(x) = ——
Trang 1428] Ti
m h
o nguye
n ha
m cu
a fix) = Ve" +
e
2
DH Y Thai Binh
2 =
e2
- e
2 e2
- e
2
f(x) = f(x) =
X — > neu — 2 2
' X
X — < neu — 2 2
ho nguye
n ha
m cii
a f(x) -Inex
1
+ xln
(1
+ xlnx)'d
x = (l.ln
x + — x)d
x X
= (In
x + l)dx = Inex.d
x
Vay f(x)dx =
Inex.dx rd(l + xlnx)
x
f (x)d
x = I
ho nguye
n ha
m cu
a f(x) = x(l - x)-°
DH Quoc gia Ha
1) +1](
1
- x)^
" = (x -
Trang 15Nen f ( x ) d x = ( x - l ) 2 M x + ( x - l ) 2 ° d x
( x - l ) ^ M ( x - l ) + ( x - l ) 2 ° d ( x - l ) = ( X - 1 ) 2 2 ( x - l ) 2 1
, 2 0 0 1
DH Quoc gia Ha Ngi - 2000
b) Dat u = x^ + 1 So sanh hai ket qua t i m ducfc
Dai hoc Tong hap TP.HCM ~ A/1977 Gidi
a) Dat X = tana => dx = (tan^a + l)da, thi :
= — sin* a + C = - (tan* a cos* a) + C
Trang 16b)
Da
t
u = + 1
=>
du =
-2 -3 o.
1
1 l-2u,^
l(
x^
+2x^
+1
4(x2
+
if
+ C + -
+ C
-
Ci
- C,
Ii
I2
+ C
- Ci
33
I T
im ho nguyen
ham cua
fix) =
Vx^ + x"" +
2
Gidi
Ta
CO :
f(x)dx =
I x2
+ X-2
I
Vx^ +x-^
+2
<ix = V(x2+X
-*
1
\ + x -
^ ) d x
=hilx
l — + C
-= Inix
t , = ln(x.Vx2
+3) +
C Tin
h F(x) = fVx2 + 3dx
DHYHaNoi -1999
Gidi
Fix) =
[Vx2 + 3dx = xVx2 +
3 jx
-d(Vx2 + 3) (Tic
h phan
- fV77
-(x) +
31n(xVx2 +3) +
(xV(x
2 + 3) +
Trang 1735 I T i m ho nguyen h a m cua fix) =
Trang 18-l
(x^ + 5x + IXx^
- 3
x +
1)'
DH Quoc gia Hd
Ngi A/2001
-Giai
Ta
CO :
x^
-l
(x^ + 5x + IXx^
- 3
x +
1) 1
2x +
5 1
2x-
1
F(x)=
8 2x + 5
J
- 1 5x + X +2x -
3 ,
-In 1 3x + X x-" -
ho nguye
n ham cua f(x) =
xl
n X ln(l
n x )
Gidi
Ta C O
: (hi(lnx))' =
Ne
n f(x)dx =
xl
nx
dx (•[In(lnx)]'
xlnx
hi(
ln x) hi(ln
x)
= In(lnx) +
C
40 I
Tim
ho nguye
n ham cua f(x) = (x +
1)
xQ + xe"
)
Gidi
Ta
CO :
(1
+ xe")' = e^
C x +
1)
(x + Ddx x = f (x)d
xd + xe'') e^Cx + Ddx
xe^Cl + xe") dCl +
xe")
[1
+ xe
^ IJ
-U +
xe"]
[(l + xe'')-(l + xe''-Dld
Cl + xe") rd(l + xe^ -
18
Trang 2044] Ch
o hkm so f(x) = 3x^
m cu
a f(x) (x -
CO
: x
^ 3x + 2 = (
x
l)^(
x + 2)
B + Ox^
+ (
A +
B 2C)x + (2A
- 2
B + C)
|
X
-
ll + Inl
ham cua f(x) =
X (l +
2
fix) = —
X^
X (l +
x2)
X^
X l +
+1
fdx fd
x 1 d(x2
+1)
= J_ -Inl
xl + iln(x
2 +
46 I
Tim hp nguyen
ham cua f(x) = —
20
u
Trang 21Gidi
Ta CO : f (x)dx = x^ + 4x^ + 4 x ^ + 1 dx x ^ - x
X J
x'^ + — + 4 x^
Trang 22Gidi
Ta
CO :
f(x)dx = xdx
x^
+3x^
+2 [(x^ +
2) (x^
+ 1)
(x^
+ IXx
^ + 2) xdx
2 2
J x^
2 +2) +
C = -
m h
o nguye
n ham cua f(x) = 2-3x'
Gidi
Ta
CO :
f(x)dx =
dx
r d
x
3x
+ c
50
i Ti
m h
o nguye
n ham cua fix) =
-Gidi
Ta
CO :
"f(x)dx = (x* -
l)dx
f [(x
^ 5x + 1) - (x^ - 5x)](x'' -
Ddx
(x^ 5x)(x^
1 f
d(x^
- 5x) 1 fd(x^
-5x
+ D
x^ 5x
+ 1 x -5 x" 5 J + D 5x (x^ - x -5 x''
= i In I x*^
- 5x I
- i In I x^- 5
x +
11
+ C = -
-+ C
51
I Tim ho nguyen
ham cua f(x) =
Trang 24x = rsm
X + s in
x co
s x
2 + sin
X
Ta
CO
: f(x ) =
Gidi
cos x + si n
X
cos x _ 2 cos x + si
n x cos x
- co
s x
2 + sin x
2 + sin x
cos x(
2 + sin x ) - co
s x cos x
F(x) =
2 + sin
X
-2 + sin
X
dx = X sin 2 +
= sin
x ln(2 + sinx) +
Gidi
sin3x.sin4x _ sinSx sin4
x _ sinSx sin4
-= — [sin5x +
sinSx sin9x +
Vay F(x)
= f (x)dx =
x sin 9
-x + sin x)d
x
- — cos 5
x — co
-s 3
x + — co
x + cos'*x)(sin®x +
Trang 26F(x) =
dx
cos
X s in
n x
3 sin
^ x sin x(
l - si
n x )
+ C
61 Tim
X s + co X sm ) = a) f(x
X
b) g(x ) = -cos2
x
sin x + co s
X
DH Ngoai thuang -
1999
a) F(x
) =
b) G(x ) = sin
X
- co s
sin
X
+ co s
X
r-d(sin X
J si n
X
+ co s
X
= In sinx + cosx |
J
sin x + co
s x
G(x) sin
x + cosx +
ho nguye
n ha
m cii
a g(x ) = sinx.sin2x.cos5x
DH Bach khoa Ha
n 2x[si
n 6
x sin 4x ] =
- [sin2xsin6
x
= — [cos4x -
cos8x + cos6x -
Vay G(x ) =
— (co
s 4
x cos 8
-x + cos 6
x cos 2x ) d
— si
n 4
x — si
-n 8
x + — si
n 6
x — si
X
1 + sin 2
x
DH Bach khoa Ha
Noi
Ta
C O
: f(x ) = sin
x + cosx)^ o^^^sf
^ ^ - S X CO Z
1
4
Dat t=
x-— o
x = t + —
o d
x =
26
Trang 27dt (t - l)(3t - 5)
A B
(t - l)(3t - 5) t - 1 3t - 5 1 = A(3t - 5) + B(t - 1)
Trang 28c= 1 = (3
A + B)t - 5A
- B 3A
+ B = 0
-5A
- B = 1
-
—^
= il n|
- l|
+ i ln
: f(x ) =
x(cos X
- si
n x )
cos x
Vay F(x ) =
cos^ x(co
s X
sin x ) cos
n 1
1 tanx | + C
67 I Tim
ho nguye
n ha
m cu
a fix ) = cos^ x
: f(x ) =
CO S^
X
Gidi
1 + cos 2
x + —
= > d
t =
1 + cos 2
Nen f(x) = t-
Trang 302 sin
x
4(
cosx-l) 8
- — In
I cos
x 1
-1 + — I
m h
o nguye
n ham cua f(x) = sin^ x
3 si
n 4
x sin 6x -
3 si
n 2
x
BH SU pham Hd
3(sin4x sin2x) -
sin6x
= 6sinxcos3
x 2sin3x.cos3x =
2cos3x(3sinx sin3x)
-Va ta
CO
sin'^x =
f(x) =
3 sin
4 sin
^ x 8cos3x
8cos^3x
F(x) ^ f(x)dx
=
-co s
3xdx
co s
3x
1
8 J -d(sin 3x) f3
ho nguye
n ham ciia f(x) = hSng so)
DH Xdy dung -
1999
Gidi
^ , „ ,
s in
a CO
S x + si
n x c os
a si
n a co
s x s in a s in
Vay f(x)dx
- si
n a
cos^ x
sin xdx
cos^
X
•d(cos x)
X
sm
a In sin
Gidi
Ta
CO
: f(x) =
- (cos3
x + cosx)sin4x =
- sin4xcos3
x + — sin4xcos
= — (sin7x +
sinx + sin5x +
30
Trang 31sin x(sin x - x cos x) + cot X + C
DH Bach khoa Ha Noi - 2000
Trang 32x =
In I sinx I
- 2sin^
x + C
BHNgoqi thiCang -AI2000 3sinx 2 xsinx - Q g , X 4g cos Gidi sm x \ _ 3cosx) „ , „ o Q s x - ) = (4co O : f(x Ta C
Vay f(x)d
x = 4cos^xsin xdx
-3 sin xd
n
71 X
4j
(2 + 2sin2x)
DH Quoc gia Ha
^l
4j d
x + cos
1 — si
3x + si
DH Y TP.HCM -
x + 3sin8xcosx )
32
Trang 34dx + sin
X
2
tan x.d(ta
n x ) + (sin x + co
s x ) dx
sinx +
C
82 Tim
b) g(x ) = cos^xcos2x
DH Ngoai thuang -
— (cosS
x + 3cosx)cos3x
3 „ n 2 — si x + n 4 — si + + - x (x)dx = Vay f
s 4x
Vay
g(x)dx = - 4
J
, 1 dx + —
2 cos 2
x + —
4 cos 4xd
x =
i X + —
sin 2
x + — si
n 4
x +
83 I Tim
ho nguye
n ha
m cii
a f(x ) = — sm
X
sin
X
+ co s
X
Gidi
Ta
CO :
X
+ co s
Trang 35Va : cos xdx
sin X + cos X
sin xdx •(cos X - s i n x) sin X + cos x ( s i n x + cosx)
<=> asinx + bcosx = A(c.sinx + d.cosx) + B(c.cosx - d.sinx)
o asinx + bcosx = (Ac -Bd)sinx + (Ad + Bcjcosx
(tan X + l)dx + (cot x + l)dx = tanx - cutx + C
86 I T i m nguyen h a m F(x) ciia fix) = 2 sin 5x + Vx + - sao cho do t h i h a m so
5 f(x) va F(x) c^t nhau t a i m p t diem t r e n true tung
DH Quoc gia Hd Noi - B/1996
Trang 36Gidi
CO : f(x ) = 2 si n5
x +
V
x + -
5
2 2 /—
3 Vx — x x + s 5 — co x) = F( =>
+ X
Do h
ai d
o t
hi cd
t n ha
u t
ai mo
t d ie
m tr en true tung, ne
n :
F(
0) = f(0)
+ C = - ^ C
87 Ti
m h
o n gu ye
n ha
m c ua f(x) =
e ™'"'sinx
Gidi
Ta
CO :
f(x)dx = |
e ế°'\sin
xdx =
,3 cos X
f
1 \
d(
3c os x) = -
n ha
m c ua f(x) = cos^
X
Gidi
Ta CO : (tanx) ' =
COS^
X
f(
x) dx
=
L^^-^=
fê^^^dCtanx) = ê"" + C
COS^
X
89
„, ,
- f/
X
s m
X + CO S
sm
X
- co s
X
Ta
CO :
f(x)dx =
Gidi
si n
X + CO S
X
>/sin
X cos X
-2
dx = (s in
X - co
s x ) 3d (s
X
- co s
x) 3
3 3/7
^ T „
= +
C =
- >/(s m
X
- co
s x
r + C
n ha
m c ua f(x) =
—
— n x si
36
Trang 38t
Da
t Dat
j
* Da
t t = V
[du
= at
^dt
dv = sin
dt v = -
cos t
I = -2t^
cos t + 6
u = t^
Jdu = 2td
t
dv = cos td
t [v
= si
n t
I = -2t
^ co
s t + 6t
^ co
s t + 6t
^ si
n t + 12
dt
cos td
12sint
Trang 39T I C H P H A N X A C D I N H
K I E N THLfC C d B A N
I T a C O cong thufc Newton - Leipnity
r b
f (x)dx = F(b) - F(a) vdi F(x) la nguyen h a m ciia f(x)
II Tinh chat
Trang 4096 Tin
h I =
fi xd
x
0
(x^ + 1)^
Gidi
Da
t
t = x' + 1 =>
dt = 2xdx
Dd
i ca
dx r2
h I =
fi
dx
0
(x + I
f
DH Y duac TP.HCM
_dx_
^d(x.l) = lii
2
-2
I = -
I = -;; sin
x cos x , d n
-x,
- sin
x + cos
DH Da Ndng -
2000
Ta
CO
: I =
I
-d (sin
X
+ co
s x) ) s x + co X in (s -
4
Gidi
= -l
n sin
X
+ cos
X
Va
y I = -
ln
l + ln>
/2-ln2 2
Ti
m
A, B sao ch
o f(x) = AsinTtx +
B thoa man :
f '(1) =
Noi
B/1998
Gidi
Ta CO : f(x) = Asinrt
x +
B
f '(x ) = ATTCOSTIX
40
Trang 41c:> (cos27; - cosO) + B(2 - 0) = 4 « 2B = 4 B = 2
DH Su pham Ki thudt - 1980 Gidi
Trang 421
0
x^ + 2x +
)
0
x^ + 2x +
9
+
-ln 2 x^ + 2x +
9
= i + i (l nl 2- ln 9)
f
1
x^ + 3x +
10
0 x^
+2x + 9
)
0
x^ + 2x +
9
= X
+
-ln 2 x^ + 2x + 9
= l.
il nl
1041 Chof(t ) =
4
0
Gidi
• t
f 4
0
(1
- CO S
2xf -
-dx
- 2 cos 2
x + cos^ 2
x + - (1 + cos 4x
dx
-c os 4x
= sin 4t -
0 o sin4t =
8sin2t
2sin2t.cos2t = 8sin2t
< =>
2sin2t(4 cos2t) =
0
sin 2t =
0
cos2t =
4 (v
6 nghi^m )
kit
o sin2
t =
0 c 2t =
kn
o t = —
-2 (104 _sin7ix)dx
BH Giao thong Van
tdi
1998
42
Trang 43I O T I Tinh I = f ^ (e^" - n sin 7ix)dx
Gidi
Ta C O : I = r 1 (e^" - 7t sin 7Tx)dx =
r e 2 x + C O S 7:x
Trang 44109 Tinh
I = (2
x co
s x)d
2x)
(1 + cos 2x) - - sin
- sin 2x)dx
3 „ cos2x
2
I—
ll o|
Tin
h da
o ham cua
am so F(x) = I
n ~ ^
c
f 1
- 1 — a : r Suy
Jo x
" +
1
Ta
C O
: F'(x) =
+ l
^
x^ >
-^x + 1 [(x^
+ 1) + V^xJ[(x2 + 1) - V2xl
2-x^
+1
x^ + V2x + 1
Do
do ix
"
-1
0 X^
+
1
dx =
2V2 F(x)
1 , 2-V
2 V2 In 2 + 2V2 '
m) Tin
h I = j
: I =
I =
dx
It
2-
2
- CO S
x)d
x 4
cos'^
xsin
^ x
tan
X
- cot
X
- sin
i=
V3-^
-(
i) = H:^ ^ 3 3 ^
i-44
Trang 460
= I M"JJ 8X
1
= 1 = 2J^ [£J^ Z-Zf^ +
8A-X SO
D + X
^O D-
= I
xp
XU TS -
TS
a
X
„U IS -
Z
li
X,
;0 D2
0
- 2 = (
2 u
i
8 ui )
-X =
Z^\
(x3
+ X)u
i • — -
X
=1
XP xS
I
xS + X
0
x3 xS + X
Trang 48CO
: I =
x2 )
4-0
4-x
^
dx = -
4
= -4.-
In 4 x-
-2
2
dx
124| Cho f(x) = sin
ai so' A, B sao ch
o fix) =
A +
B ' cos
X
- sin
x y
b)
Tin
h I =
" 2
f (x)d
x 0
DH Su pham TP.HCM
- 1995
Gidi
a)
Tim A, B
Ta
CO
: f(x) = sin
X
= A + B
cos
X
+ sm
X
+ (
A B) si
-n x
sin
X
+ cos
l 2
b)
Tin
h I=
X
•dx =
t r
2 COS
X
- sin
X
cos
X
+ sin
X
dx
I =
— X I
n
2 2 cos
X
+ sin
X
7 T
4
125| Tin
h I = f
2
sin 3x
0
cos x +
1 dx
Ta
CO :
Gidi
sin 3
x 3 sin
X +
1
3 sin
(cosx
+1)
Vay 1 =
- si
n 3xd
x _ ^
sin xdx + 2
Trang 50128 Tinh
I = f- 2cos-
X
Ta CO :
I =
= 2
Gidi
^ 2 cos^
X , „ f ^ cos
^ X.
cos xd
0
1 + sin
X
^2 f
2 co
s x- C'
x) =
2 si n
)
0
1 + sin
X
n 2
1
= 2 (1 ) =
129 Tinh
I = 2 sin^
xdx
BR Bach khoa TP.HCM
- BI2001
Gidi
Ta CO : I = 2 sin^
xdx = 2 (1 - cos^ x ) si
n xd
x
2 c,-
sin xdx +
2 cos^xd(co
s x ) = '^cos^ X
- co s
X 2
2
~
3
130 Tinh
I = 2 xdx
-1
x^
+ 2
DH Tong hap Ha
Noi
1993
Gidi
Ta CO : 2
J 2
n x^
+
2
-1
= (l n6 -l
-n 3 ) =
h bdi : f(x ) =
•
1
X neu X€
[0
;1
]
0 neu
> 0 thi f(x ) +oo
Vay f(x) khon
f
0 ne'u
X =
0
|l32| Xet si
r kh
a tic
h cu
a fix ) tre
n doa
n [1
; 0 ] vd
i fix ) = ^ -1 neu