Câu IV 1 điểm Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a; SA = a vuông góc với đáy; E là trung điểm cạnh CD.. Tính khoảng cách từ S đến đường thẳng BE.. Hãy xác định tọa độ các
Trang 1Đề 6:Câu I (2 điểm)1) Khảo sát sự biến thiên và vẽ đồ thị ( ) 3 2 3 11
x
f x = −x − +x
2) Tìm trên đồ thị hàm số đã cho hai điểm đối xứng với nhau qua trục tung
Câu II (2 điểm)) Giải phương trình: 2cos2 cos sin 22 sin sin 2 1
π
5
x
x
Câu III (1 điểm) Tìm số a sao cho diện tích hình phẳng giới hạn bởi các đường x=0;x=1;y x y a= 2; = (0≤ ≤a 1) là nhỏ nhất
Câu IV (1 điểm) Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a; SA = a vuông góc với đáy; E là trung điểm
cạnh CD Tính khoảng cách từ S đến đường thẳng BE
Câu V (1 điểm) Cho hai số thực x, y thỏa mãn: x> y Chứng minh rằng:
2
x y
x y
x y e e
e e
− > −
+
và 2x + 6y + 3 = 0 Hãy xác định tọa độ các đỉnh của tam giác
x− y z+ + = Tìm điểm M thuộc (α ) sao cho MA MB MC uuur uuur uuur+ + nhỏ nhất
Câu VII (1 điểm) Tìm nghiệm phức của phương trình: ( 2 ) (2 2 )
z −z + z − − =z
Đề 6:Câu I (2 điểm)1) Khảo sát sự biến thiên và vẽ đồ thị ( ) 3 2 3 11
x
f x = −x − +x
2) Tìm trên đồ thị hàm số đã cho hai điểm đối xứng với nhau qua trục tung
Câu II (2 điểm)) Giải phương trình: 2cos2 cos sin 22 sin sin 2 1
π
5
1
5
x
x
Câu III (1 điểm) Tìm số a sao cho diện tích hình phẳng giới hạn bởi các đường x=0;x=1;y x y a= 2; = (0≤ ≤a 1) là nhỏ nhất
Câu IV (1 điểm) Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a; SA = a vuông góc với đáy; E là trung điểm
cạnh CD Tính khoảng cách từ S đến đường thẳng BE
Câu V (1 điểm) Cho hai số thực x, y thỏa mãn: x> y Chứng minh rằng:
2
x y
x y
x y e e
e e
− > −
+
và 2x + 6y + 3 = 0 Hãy xác định tọa độ các đỉnh của tam giác
x− y z+ + = Tìm điểm M thuộc (α ) sao cho MA MB MC uuur uuur uuur+ + nhỏ nhất.
Câu VII (1 điểm) Tìm nghiệm phức của phương trình: ( 2 ) (2 2 )
z −z + z − − =z