Bài 3 2,0 điểm Gải bài toán bằng cách lập phơng trình hoặc hệ phơng trình: Một ngời đi xe đạp từ A đến B cách nhau 24 km.Khi đi từ B trở về A ngời đó tăng thêm vận tốc 4km/h so với lúc đ
Trang 1uBND tinh bắc ninh
Sở giáo dục và đào tạo đề thi tuyển sinh vào lớp 10 thpt
Năm học 2011 - 2012 Môn thi: Toán Bài 1(1,5 điểm)
a)So sánh : 3 5 và 4 3
b)Rút gọn biểu thức: 3 5 3 5
A= + − −
Bài 2 (2,0 điểm)
Cho hệ phơng trình: 2 5 1
x y m
x y
+ = −
− =
( m là tham số) a)Giải hệ phơng trình với m = 1
b)Tìm m để hệ có nghiệm (x;y) thỏa mãn : x2 – 2y2 = 1
Bài 3 (2,0 điểm) Gải bài toán bằng cách lập phơng trình hoặc hệ phơng trình:
Một ngời đi xe đạp từ A đến B cách nhau 24 km.Khi đi từ B trở về A ngời đó tăng thêm vận tốc 4km/h so với lúc đi, vì vậy thời gian về ít hơn thời gian đi 30 phút.Tính vận tốc xe đạp khi đi từ A đến B
Bài 4 (3,5 điểm)
Cho đờng tròn (O;R), dây BC cố định (BC < 2R) và điểm A di động trên cung lớn BC sao cho tam giác ABC có ba góc nhọn Các đờng cao BD và CE của tam giác ABC cắt nhau ở H
a)Chứng minh rằng tứ giác ADHE nội tiếp
b)Giả sử ã 0
60
BAC= , hãy tính khoảng cách từ tâm O đến cạnh BC theo R.
c)Chứng minh rằng đờng thẳng kẻ qua A và vuông góc với DE luôn đi qua một
điểm cố định
d) Phân giác góc ãABD cắt CE tại M, cắt AC tại P Phân giác góc ãACE cắt BD tại
N, cắt AB tại Q Tứ giác MNPQ là hình gì? Tại sao?
Bài 5 (1,0 điểm)
Cho biểu thức: P = xy x( −2)(y+ +6) 12x2−24x+3y2+18y+36 Chứng minh P luôn dơng với mọi giá trị x;y ∈R