1. Trang chủ
  2. » Giáo án - Bài giảng

Đề KTKHII(Ma trận + Đáp án)

5 224 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 304 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Giải toán bằng cách lập phương trình.. Tính chất đường phân giác của tam giác.. Tam giác đồng dạng.. Biết chứng minh hai tam giác đồng dạng, biết tính độ dài các đoạn thẳng dựa vào tỉ số

Trang 1

MA TRẬN ĐỀ KIỂM TRA HỌC KÌ II

Năm học 2010 – 2011 Môn : Toán lớp 8

Thời gian: 90 phút (Không kể thời gian giao đề)

Cấp độ

Chủ đề

Nhận biết Thông hiểu Vận dụng Tổng

Cấp độ thấp Cấp độ cao

1.Phương

trình, giải

các dạng

phương

trình

Nhận biết được phương trình bậc nhất một

ẩn và cách giải

Hiểu được cách giải phương trình tích

Biết giải phương trình chứa ẩn ở mẫu thức

Số câu

Số điểm

Tỉ lệ %

1 0,5 5%

1 1,0 10%

1 1,5 15%

3 3,0 30% 2.Bất

phương trình

bậc nhất 1

ẩn, giải bất

phương

trình

Hiểu được cách giải bất phương trình bậc nhất một

ẩn

Biết giải bất phương trình bậc nhất một ẩn

và biểu diễn tập nghiệm trên trục số

Số câu

Số điểm

Tỉ lệ %

1 0,5 5%

1 1,0 10%

2 1,5 15%

3 Giải toán

bằng cách

lập phương

trình

Biết giải toán bằng cách lập phương trình

Số câu

Số điểm

Tỉ lệ %

1 1,5

1 1,5 15%

4 Tính chất

đường phân

giác của tam

giác Tam

giác đồng

dạng

Biết chứng minh hai tam giác đồng dạng, biết tính độ dài các đoạn thẳng dựa vào tỉ

số hai tam

Có kĩ năng tính tỉ số diện tích của hai tam

Trang 2

giác đồng dạng

giác

Số câu

Số điểm

Tỉ lệ %

2 2,0 20%

1 1,0 10%

3 3,0 30%

5 Hình lăng

trụ đứng

Hiểu cách tính thể tích của hình lăng trụ đứng

Số câu

Số điểm

Tỉ lệ %

1 1,0 10%

1 1,0 10% Tổng số câu

Tổng số

điểm

Tỉ lệ %

2 1,0 20%

2 2,0 12,5%

5 6,0 60%

1 1,0 10%

10 10,0 100%

Trang 3

ĐỀ KIỂM TRA HỌC KÌ II Năm học 2010 – 2011 Môn : Toán lớp 8

Thời gian: 90 phút (Không kể thời gian giao đề)

Đề kiểm tra:

Câu 1: (3,0 điểm) Giải các phương trình sau:

a) – 3x + 2 = 5

b) (x + 2)(2x – 3) = 0

c) 2 1 2

2 ( 2)

+ − =

x

Câu 2: (1,5 điểm)

a) Tìm x sao cho giá trị của biểu thức A = 2x – 5 không âm

b) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số:

4x 1 2 x 10x 3

3 15 5

− − − ≤ −

Câu 3: (1,5 điểm) Tổng của hai số bằng 120 Số này bằng số kia Tìm hai số đó Câu 4: (1,0 điểm) Tính thể tích của một hình lăng trụ đứng có đáy là tam giác vuông,

chiều cao của lăng trụ là 7cm Độ dài hai cạnh góc vuông của đáy là 3cm và 4cm

Câu 5: (3,0 điểm) Cho tam giác ABC vuông tại A có AB = 6cm; AC = 8cm Kẻ

đường cao AH

a) Chứng minh ∆ABC ∆HBA

b) Tính độ dài các cạnh BC, AH

c) Phân giác của góc ACB cắt AH tại E, cắt AB tại D Tính tỉ số diện tích của hai tam giác ACD và HCE

Đáp án - Biểu điểm: Môn toán 8

Trang 4

Câu Nội dung Điểm

1 a) -3x = 5 – 2

⇔-3x = 3

⇔ x = -1

Vậy tập nghiệm của phương trình là S = {-1}

b) (x + 2)(2x – 3) = 0

⇔x + 2 = 0 ⇔x = - 2

hoặc 2x - 3 = 0 ⇔x =

Vậy tập nghiệm của phương trình là S = {- 2; }

c) 2 1 2

2 ( 2)

+ − =

x

ĐKXĐ : x ≠ 2 và x ≠ 0

(1)⇔ x(x +2) – (x – 2 ) = 2

⇔ x2 + 2x –x + 2 = 2

⇔x2 + x = 2 -2

⇔ x(x + 1 ) = 0

⇔ x = 0 ( loại)

hoặc x = -1 ( TMĐK)

Vậy tập nghiệm của phương trình là S = {-1}

0,5

0,5 0,5 0,25

0,5

0,5 0,25

2 a) A không âm ⇔2x – 5 ≥ 0 ⇔x ≥

b) 4x 1 2 x 10x 3

3 15 5

− − − ≤ −

⇔5(4x – 1) – (2 – x) ≤ 3(10x – 3)

⇔- 9x ≤ - 2

⇔ x ≥

Vậy tập nghiệm bất phương trình là x x 2

9

2/9 0

0,5

0,5 0,5

3 Gọi số thứ nhất là x (x nguyên dương; x < 120)

Thì số thứ hai là

3

x

Tổng của chúng bằng 120

Ta có phương trình : x +

3

x

= 120 Giải được x = 90 (TMĐK)

Vậy số thứ nhất là 90, số thứ hai là 90: 3 = 30

0,25

0,75 0,25 0,25

4 Thể tích của hình lăng trụ đứng tam giác là:

V = S.h = .3.4.7 = 42(cm3) 1,0

Trang 5

Vẽ hình chính xác, Ghi được GT, KL

a) Xét ∆ABC và ∆HBA có

= = 900 ; chung

Vậy ∆ABC ∆HBA (g.g)

b) Ta có: BC2 =AB2 + AC2

BC2 = 100

BC = 10 (cm)

Vì ∆ABC ∆HBA (chứng minh trên) => AC BC

HA = AB hay AH AB.AC 6.8 4,8

BC 10

c) Ta có: HC= AC2−AH2 =6, 4

Xét ∆ADC và ∆EHC có:

= = 900

= (CD là phân giác góc ACB)

Vậy ∆ADC ∆HEC (g.g)

=> AD DC AC 8 5

HE = EC = HC = 6, 4 = 4 Vậy

2 ADC

HEC

 

= ÷ =

 

0,5

0,5

0,5

0,5

0,5

0,5 Ghi chú: Học sinh có thể giải theo cách khác mà vẫn đảm bảo tính hợp lí, chính xác thì vẫn cho điểm tối đa

Ngày đăng: 27/06/2015, 07:00

TỪ KHÓA LIÊN QUAN

w