Luận án thạc sĩ khoa học -ngành giải tích -Chuyên đê :Hệ phương trình Hàm
Trang 1CHIfONG 4 " ., '" , ,
TDUA T GIAI SO VA CAC AP DUNG
4.1
(4.1)
(4.2)
(4.3)
THU~T GIAI SO TONG QUAT
Trong ph~n nay, ta xet thu~t giiii (2.8) voi I=[-b, b], ct;1th~ la :
Ta xet day le)p {fV)} cho bdi cong thuc sau :
VOiXE 1= [-b,b] va i = 1,2, , n, ta de)t
n m
j=l k=l J;(O)(x)=o.
Dva vao (4.1), ta tinh toan cac gia tri J;(V)(x/J t~i mQt s6 di~m nUt
roi r~c
X~ = -b + ~ L1x, ~=0, 1, , N,
Trang 2(4.4 )
(4.5)
(4.6)
(4.7)
(4.8)
N ];(V) (x) = I];(V )(Xfl),Wfl(X)
fl=O
trong d6 cac ham wo(x), WI(X), , wr.ix) du'Qc xac dinh nhu' sau:
(x - Xfl-l)! Ax,
W flex) =~ (Xfl+l0 - x)! Ax,
WO(X)=
{
(Xl - x)! Ax,
0,
WN(X)=
{
(x - XN-I)! Ax,
0, f)~t
];~V) =];(V) (Xfl)
X fl-l ~ X ~ X fl '
X fl ~ X ~ X fl+l'
x ~ [Xfl-I,Xfl+d,
,1 ~ Jl ~ N - 1
- b ~ x ~ Xl'
Xl ~ X ~ b,
XN-I ~ X ~ b, -b~X~XN-I'
(4.9)
(4.10)
O~f.i~N, 1 ~ i ~ n,
~(O)
-J;Jl = 0
v ~ 1
Trang 3Vi du 1:
(4.11)
(4.12)
HAl VI DC) TINH TOAN CC) THE
Ta ap d\lng tinh toan sf)voi hai vi d\l C\lthg san day
Truong hQp phi tuye' n
I
xl
trong d6
2
2
Trang 4(4.14 )
Loi giai chinh xac cua h~ (4.11), (4.12) Ia
Tinh loan bdi thu~t giai (4.9), (4.10) voi cae bu'oc l~p v =1,2, saD cho
max
I
J;(V) - {'(v-I)
I
l:O:l:O:n Ji J IJl
0:0:Jl:O:N
< 10-8
Sau do, cho N tang d~n l~n lu'Qtvoi N=5, 10, 15,20, 100
Bang 1, 2 cho ke't qua so sanh fi(V)(x~)voi fiex(x~)t(,licae nut x~ voi i=I,2
Bang 3, 4 cho cae sai s6 thay d6i theo s6 nUtN tang d~n
-1
7(v) tex
lJi - J IJl - J 1 X Ji
-0
1
2
3
4
5
-1.000
-0.600 -0.200 0.200 0.600 1.000
-1.000 -0.600 -0.200 0.200 0.600 1.000
0.000061 0.000149 0.000193 0.000060 0.000149 0.000194
-max O:O:~:O:5 E~l - 1 94E-04
Trang 5Bang 2: N=5 E 2fl -- lf~(V) 2fl - f ~ex2 ( X fl )1
-0
1
2
3
4
5
1.000 0.360 0.040 0.040 0.359 1.000
1.000 0.360 0.040 0.040 0.360 1.000
0.000004 0.000071 0.000239 0.000372 0.000525 0.000251
-max 0::;11::;5 E21l - O 525E-03
N el=max O::;Il::;NElll e2=max O::;Il::;NE21l
Trang 6Vi du 2: Truong hqp tuye'n Hnh
a Uk(x,y) = aUk.Y Xet h~ san day voi n= m=2, b =1, x E [-1,1]
II (x) = 100II (2"+ 3) + 200 12(2"+ 4) + 200 12("3+ 2) + g I(x)
(4.15 ) J
12 (x) =200 II ("3+ 2) + 200 J; (2"+ 3) + 100 12 ("3+ 4) + g 2(x)
trong d6
g2(x) = 1200x - 1200
Cac s6 aUk'bijk.Cijkvoi i, j, k b~ng 1 ho~c 2 thml (2.10), (2.13), (2.14).
Loi giai chinh xac cua (4.15), (4.16) la
Tinh loan bdi thu~t giai (4.9), (4.10) voi cac btioc l~p v =1,2, sao cho
I /,(V) - .r(v-I)
I
O';'I',;,N
K€t qua cho bdi bang 5 va 6 san day chI cac gia tri tinh loan l~v) so sanh
vOi cac gia tri chinh xac /,~x (x 1') t~i cac diem nut Xo,Xl ., Xs, voi N=5
Trang 7Bang 5: N=5 E
-1
(
)1
l,u - J l,u - J! X ,u
-J.l J!,u 'l(V) hex (X ,u ) E!,u
-maxo::;J.!::;5EJ.!1 = 3.035150 E-11
-lf
~(V)
f~ex (
)1
2,u- 2,u- 2 X,u
-J.l f~(V)
-0
1
2
3
4
5
-6.000 -3.600 -1.200 0.120 0.360 6.000
-6.000 -3.600 -1.200 0.120 0.360 6.000
0.000000 0.000000 0.000000 O.OOOOOD 0.000000 0.000000
-max O::;J.!::;5 E 2J.! = 3 13 4 2 0 6 E - 11
N el=max o::;J.!::;NE!J.! e2=max O::;J.!::;NE2J.!
Trang 8(4.18)
(GI)
(G2)
(G3)
(G4)
(G5)
CHU Y VE MOT HI; TUYEN TINH TUONG T(j
Trong ph~n nay chung t6i ehu yd€n h~ phudng trinh ham tuy€n tinh thuQe d~ng san day:
n
Laijf/Sij (x)) =gi(X), j=1
I:::;;i:::;;n
VxElcR,
trong d6 I la khoang bi eh~n hay kh6ng bi eh~n eua R.
ajj, 1 s i,j s n la' cae h~ng s6 eho truDe, fj ,Is i s n Ia cae fin ham
f)~u lien, gi6ng nhu cae ky hi~u d ehudng 2, ta d~t
x = C(I; Rn)
X = Cb(l; Rn)
n€u I = [a, b] ,
n€u I Ia khoang kh6ng bi eh~n eua R.
Ta thanh l~p cae gia thi€t san :
g=(gl, ,gn) EX,
Sjj t6n t~i ham nguQe Sjj-l lien We, V i =1, ,n ,
ajj "* 0, Vi=I, ,n,
n /I
l aH
a = ~ ~ a~I < 1 j=1
Trang 9Khi do ta co kSt qua sau:
Dinh If 4.1 :
(4.19)
(4.20)
(4.21)
(01)
(02)
Gid sa (G1) - (G5) la dung Khi do t8n tf;li duy nh[{t mQt ham
cung tIn dtnh deli vai g trong X.
Tir gla thiSt (G3), (G4) ta viSt h<$(4.18) v€ d';lng tu'dng du'dng
hay
j=1
vOi
aii =0
a
aij= ,j*l
au
Sij(X) =Sij(Su (x))
gJx) = ~gi(Si~1(X))
au
Thea cae gia thi€t (GI)-(G5) ta co:
g-\g1, ,gn)EX,
S :I~I 1J lien We ,
Trang 10(4.22)
(4.23)
(4.24)
(4.25)
a = I iJiij I < 1.
i=1 j=1
Ap dl;lng k€t qua t6ng quat trong chudng 2 yoi m=1 Khi d6 dinh ly 4.1 du<;1cchung minh
.
chlnh thu? t giai cho h~ (4.18) nhusau:
ff/") (x) = tiiiff}"-l) (Sif(X))+ gJx),
trong d6
aH =
t
oa.
aii
Sy-Cx)= Sij(Si~lex))
au
j = i
j 7=i
Til thu?t giai (4.22) ta xac dinh cac gia tri roi r(;lc cua Wi giai t(;li cac di€m nut Xjnhusau:
Trang 11(4.27)
(4.28)
(4.30)
(4.31)
(4.32)
x~ =-1 + ~ ~x
0:::; ~:::; N,
Sau d6 nQi suy cae gia tri t<;ticae di€m nUt (4.26) bdi cae ham lien tl;te
tren [-1,1] va tren m6i do<;tn[X~-l,x~] Ia ham b~e nhc1ttheo x, 0:::;~:::;N,
tae Ia
N
f;(v>cx) = l:f;(V)(x").w,, (x)
,,=0
f)~1
J;~V) = J;(v>c x" )
!
(X-X,,_l)/ &, X,,-l ~ X ~ x"'
wo(X)=
{
(Xl - x)/ &,
0,
-l~X~Xl'
Xl ~ X ~ 1,
WN(X) =
{
(x - XN-l)/ &,
0,
XN-l ~ X ~ 1, -l~X~XN-l
Trang 12.{'(v)- o 1<°< 0 < < N _12
Ta ap dvng thu~t giai (4.33) tren hai vi dVev the:
Vi do 1:
X6t h~
(4.34)
3
(
t+1
2t+1 J
If; 1)+ 2001, (Vt)+ 1,( 2t; 1) = g,(t),
f (CDSt) + /, (sint) + 300/, ((1+21)' -I) = g, (I),
-1::::;t:~1
trong d6
g2(t)=(t-1) /2, g3(t)=cost
Loi giai ehinh xae eua (4.34), (4.35) Ia
Cae s6 thlfe aij , cae ham Siit), gi(t) thoa cae gia thie"t (G 1) - (G5)
Trang 13(4.38)
Vi6t l,!i h~ (4.34) vi: d,!ng (4.20)
x ~
(
Vx+l
J
-~
(
2Vx+l
1
(
X3 -l\
j 1 C (
2X3 -I
J
1; (x) = -~300 1;(cOS(-1+ ~2(x + 1)))- ~300 12(sin(-1 + ~2(x + 1)))
Tinh toan bdi thu~t giai (4.33) voi cae bu'oc l~p v =1,2, sao cho
maxI J:(V) - f(v-l)
I
O';p,;N
Sau do, cho N tang dc1nlc1nlu'Qtvoi N=5, 10, 15,20, 100
Bang 9, 10, 11 cho k6t qua so sanh fj(V)(x/l)voi fjex(x/l)t,!i cae nut x/l voi i=1,2,3 va I.l=0, , N.
Bang 12, 13, 14 cho cae sai s6 thay d6i theo s6 nut N tang dc1n
Elp = I};~)- };ex(xp)1
===================================================================
====================~.~=============================================
0
1
2
3
4
5
I -0.999999999753
I -0.5999999997i1
I -0.199999999824
I 0.199999999982
I 0.599999999984
I 0.999999999985
-1.01)0000000000 -0.600000000000 -0.200000L}',QOOO 0.200000000000 0.600000000000 1.000000000000
0.000000000247 0.000000000229 0.000000000176 0.000000000018 0.000000000016 0.000000000015
===================================================================
maXO::;;/l::;;5 E 1/l = 2 4 7 E - 1 0
Trang 14Bang 10: N=5 E - lf~(V)
==================================================================
J.l I f ~(V) 2j.1 f2ex(Xj.1)
==================================================================
E2j.1
0
1
2
3
4
5
I 0.000000000038
I -0.000000000033
I -0.000000000035
I -0.000000000035
I -0.000000000037
I -0.00000000n033
0.000000000000 0.000000000000 0.000000000000 0.000000000000 0.000000000000 0.000000000000
0.000000000038 0.000000000033 0.000000000035 0.000000000035 0.000000000037 0.000000000033
==================================================================
maxO:::Jl:::5 E2Jl = 3 82E-11
Bang 11: N=5 E 3j.1 - - lf~(V) 3j.1 - f ~ex3 ( Xj.1)1
-J.l I f ~(V) 3j.1 ft(xj.1)
- E3j.1
0
1
2
3
4
5
I 0.000000000038
I -0.000000000033
I -0.000000000035
I -0.000000000037
I -0.000000000036
I -0.000000000029
0.000000000000 0.000000000000 0.000000000000 0.000000000000 0.000000000000 0.000000000000
0.000000000038 0.000000000033 0.000000000035 0.000000000037 0.000000000036 0.000000000029
===================================================================
maXO:::Jl:::5 E3Jl = 3.82E-11
N EI=maxO:::Jl:::N EIJl e2=max O:::Jl:::NE2Jl e3=max O:::Jl:::NE3Jl
Trang 15Vi do 2:
(4.39)
(4.40)
(4.41 )
Viet I~i h<$
(4.42)
VOl
100/1(13)+ 12 (sin2 ~J=gl(l),
(
t+I
m
)
-1:=0;t:=o;1 ,
gl(t)=IOOe , g2(t)=(t+ 1) / 2
Loi giai chinh xac cua h<$(4.39) la
f1e\t) = t f2eX(t) = 0
1 l
2 [
77:~
J}
77:
Il
f (x) =-" f
I
.
/
-I:=o;x:=o;1.
Trang 16Bang 15: N=5 E
-I
'l(v) 'lex
l,u - J l,u - J I X ,u
-EI,u
0
1
2
3
4
5
I -1.000000000000
I -0.600000000000
I -0.200000000000
I 0.200000000000
I 0.600000000000
I 1.000000000000
-1.000000000000 -0.600000000000 -0.200000000000 0.200000000000 0.600000000000 1.000000000000
0.000000000000 0.000000000000 0.000000000000 0.000000000000 0.000000000000 0.000000000000 -
-maXOS;/lS;5 E 1/l = 1, 14 E-13
Bang 16: N=5 E 2,u - - lf~(V) 2,u - f ~ex2 ( X,u)1
-E2,u
0
1
2
3
4
5
0.000000000011
0.000000000008
0.000000000004
0.000000000000
0.000000000000
0.000000000000
0.000000000000 0.000000000000 0.000000000000 0.000000000000 0.000000000000 0.000000000000
0.000000000011 0.000000000008 0.000000000004 0.000000000000 0.000000000000 0.000000000000
-maXOS;/lS;5 E2/l = 1 06E-ll
N el=max OS;/lS;NEI/l e2=max OS;/lS;NE2/l