Luận án thạc sĩ toán học chuyên ngành Giải Tích -Chuyên đề : Lời giải chỉnh hóa của phương trình tích phân loại một
Trang 1Cl1ltdng 2 : Tinh Kllong Chlnh Ci'ta Phu'dng Trlnh Tich Philo Lo~i MQt
CHUaNG 2:
TINH I(H 6 NG cHiNH CDA PHU ONG TRINH TICH
PHAN LO~I MQT
Phu'dngtrlnh tich phan IQai m9t co th~ vie't dudi d;;tngt6ng quat: Au = g
Trang do A:X ~ Y
1 uet) H Jk(s, t)ll(s)ds
0
. X= Y= C[O,l] (Ta se xet trtrdng h<;fpX = Y =L2 [0,1] san) k (s,t)la ham thlfc lien t\lC tren 1=[0,1]x [0,1]
u la gn ham; u EX
. g la dIT li~u cho trudc; g E C[O,l]
2-1.Dinh Iv :
Toan tti A dil noi d tren la hoan loan xac dinh, tuye'n tinh, lien tt,lc,compact
Chllng l11.inh:
A xac dinh
Chi dn chung minh Au(t) lien t\lC tren [0,1]
D~t M =max {Iu(t)//t E [O,l]} =11u IItrang C[O,l]
Vi k la lien t\lC tren t~p compact I nen k lien t\lC dell
trenI =>V8>0 30>0:II(s,t)-(s',t')llsothllk(s,t)-k(s',t')ls~
La'y t E [0, 1] ; It' -t Iso => lies,t) - (s, t' )11:::;0
Khi do I Au(t) - Au(t') Is flk(S, to) - k(s, t*u(s~ldS s Mf0 0~ ds
=> lABel) - Au(t') I :::;8
Tuc Au lil lien tt,lc t;;ti tE [0, 1] => All E C[O, 1]
A tuye'n tinh hi0n nhien
. A lien t\lC
Vi k lil lien t\lC tren t~p compact I nen giii
su-C=suplk (s,t)1
(s,t)EI
Ta co: Vu E X; IAu(t)1=IJk(s, t)u(s)ds s Jlk(s, t~lu(s~ds
=> IAu(t)lsllullf~lk(s,t)ldssqlull
=> sup I Au(t) I=IIAull sC lIuli
tE[O,l]
A tuye'n tinh ;IIAulisC lIull VUEX V~y A lien t\lC
. A lil to<1n tti compact
La'y K c C[O,1] ; K bi chi;in.Ta phiii chung minh hai dieu A(K) bi chi;in va
A(K) la h9 lien tt,lCd6ng b?c.
Khi do theo djnh Ii Ascoli (XemO.3) A(K) lil compact tlidng d6i
Tuc A la to<:1ntti compact
VUEX
Trang 2+E>~t N = sup lIuli; c = supIk(s,t)I
UEK (s,t) EI La'y tE[O,l]
IAu(t) Is f~lk(s,t)llu (s) Ids :S;lIullf~lk(s,t)1ds:s;N.C VUE K
~IIAull :s; N.C VUE K ~ A(K) bi ch~n
+Do stj lien t\lC dell Clla k tren I Den V li >0 30> 0- saG cho
Vt,t' E[0,1] :It - t'l:s; 8 ~ lI(s,t) - (s,t')11 s 8~ Ik(s,t)-k (s,t') I<~
N
~VuEK:IAu(t)-Au(t')1 s rl/k(s,t)-k(s,t')llu(s)ldssN.~=li tuc
'Bay gio ta xet tinh khong chinh cua A trong tru'ong h<;jptren tuc tru'ong h<;jp X=y= C [0,1]
2-2.Dinh Iv: Neu k(.,.) E C'(I) thl RangeAt:.Y
Clncl1}!111;l1h:Voi u E C[0,1]
1
E>~t yet) =Au(t) =fk (s,t) u(s)ds
o Voi m6it E [0,1] ra 'rang k (S,t)E C1[I]~k(s,t)u(s) E C [0,1]
~k(s,t) lieS)kh:i tich theo s
. Voi m6i s E [0,1] ham s6 tH k(s,t) lieS) kh:i vi theo t va d?o ct"ia no 1a ~~ (s,t) lieS) (VI kEC1[ID
.
l
ak(s,t)U(S~Sh(S)= max
l
ak(s,t)u(s~ d~ tha'yh(s) 1a kh:i tich
Ta se chung minh yet)la ham kha vi theo t
Th?t v~y:
y(t+h)-y(t) =}[k(s,t+h)-k(s,t)]u(S)dS = }ak (s,t +8h)u(s)ds voi8E(0,1)
Do I ak (s,t+Bh) lieS) Is h(s) kha tich
at
Nen theo dinh 19 hQi t\l bi ch~n (Xem 0.4)
yet + h) - yet) I
Ta du'<;jc:hm =1m - (s,t+ ) lieS) s
11->0 h 'HO 0 at
= f Jim -(s, t + 8h)u(s)ds = f-(s, t) lieS)ds
Tllc la yet)la ham kh:l vi
La'y u 'E C[O,I] ~ Au 13 kh:l vi
Bay gio gE Range A ta xet stj ph\l thuQc lien t\lC cua nghi<%m VaG dli ki<%ntrong tntong h<;jp tang quat
A(K) 1a
2-3 Dinh If.:
Trang 3Chlfdng 2 : Tlnh Khong Chlnh Cua Phtfdng Trinh Tich Phan Lo;;tiM9t
Ne'll A don anh thl Al :Range A -+ X:la khong lien wc.c:5 day A:X -+ Y voi A tllye'n tinh lien tI,lc, compact va X=Y= C[O,l]
Clutnf! minh:
Chli 9 r~ng dimX= dimY=00
Gia sir A-I lien t\IC; xet(xn)n c B trong d6 B= {YEX IlIxll<I}
. =>(Axn)nc A(B) va A(B) compact tliong d6i trong Y
=>T6n t?i day con clla Axn c6 the k.Y.hit%u la (Axn)n hqi tl,l ve Z E Y => (Axn)n
la day cosi trong Y
Do A-I la lien t\IC nen VXEX,IIAIAxil=IIxll~ constllAxll
D~t Axn= Ynla day cosi trong Y
Ta c6 IIxn-xlIIlI~ const IIYn-YIllIl
=> Xnl~ day cosi trong X=>B la t~p compact tliong d6i trong X=>Xla hUll h?n
chien (vo 19)
Trong trliong h<;fpA khong don anh ta se xet:
- xl
A : Iker A -+ RangeA
[x] H A[x] = Ax
Thl A la tuye'n tinh, don anh
Khi d6 ne'u )kerA la hUll lwn chien tb.l RangeA cling hUll h?n chiell Va nhli v~y vit%cgiai phliong trlnh (1) cling chinh la giai mqt ht%phliongtinh tuye'n tinh.
Do v~y bay giG ta xet truong h<;fp)ker A khong hUll h?n chien
2-4 Dinh Iv :
A: X-+ Y X = Y= C [0,1] ; A tuye'n tinh, lien t\lC, compact va gilt stt
do xl h" "
h' 1m Iker A =00 t e t 1
3(xn)nc X sao cho Axn-+ 0 va Xn phan leY
Hon nua c6 th~ chC;H1(xn)n sao chollxnll-+ 00
CIUlnf! minh:
~ xl
A: Iker A
[x]H I\.[x] = Ax I\.la tuye'ntinh va don anh
Ta chung minh A compact
D~H 13=
!
[x]/lI[x]11< I}
1\.(13)= Ax: II[x]11< l}c {Ax: Ilxll< I}
Ta co' : {Ax: IIxll<I} la t~p compact Luong d6i do A la compact
=>A.la loan ttt compact
Ta se chung minhA-1:RangeA-+7kerA lakhong lien tl,lCvi ne'u A-11ien
t\lc=>A-IA la compact maA-IA la anh X? d6ng nha't tren YtcerA
=> A-I A(B) = B la compact tliong d6i=> dim?-ker A <00 tnli gilt thie't dim?{er A=00
Nhu v~y A-I khong lien Wc
Trang 4=>3'" ) cRangeA sao choy +0 vaX-If ) ~o
gicisl1: y n = A[x ] n = Ax n
=>A[x ] +0 va [x ] ~ 0 n n
nhli v~y tan t(;li day con cua [XII]ta v~n ky hi~u la [XII]thoa:1I[x,,] 112Go> 0 ma
A[x,,] + 0
=>3(Xn)n cx:IIXn112So >0 va Axn +O
Ta co the gici sl1 Ax n :f;0 Vn
=> Au + 0
n
II II
IIx n II - 1 + 00
Bay giG ta se xet tinh khong chlnh clla phu'dng trlnh
Au=g
Voi A:X +Y
1 U(t)H Jk(s, t)u(s)ds
0 X=Y=L2[0,1]
k(s,t) la ham thttc lien tl,lc tren I= [O,l]x[O,I]
u la §'n ham UEL2[0,1]
g la dG' ki~n cho trlioc gE L2[0,1]
2-5 BiBh Iv:
Toan tl1A nhli da noi d phlidng trlnh (2)la hoan loan xac dinh, tuye'n tinh, lien tl,lC
(2)
va compact
Clutng minh:
A la hoan loan xac dinh
Ta se chung minh :y(t)= rl k(s,t)u(s)dsJo la lien tuc tren [0,1] trong tru'ong.
t\lC tren I va U E L2[0,1]
Tli d6 SHYra yet) E C[O,I] ma C[O,l]c L2[0,1]
=> Y E L2[0,1]
Th?t v~y
Ta se xet trliong h<)p1l:f;0 (Ne'llu =O=>y(t) =OVIE [0,1] =>yet) lien tl,lc
Do stt lien t~lC clla k la lien t\lC den tren I Den
Vs >0,38 > 0 ne'll lies, I) - (s', 1')11s 8 thllk(s, t) -:-Ices', I')! s 1I~2
h<;lpk lien
Trang 5(d day ta xetllul12=~ 1Iu(s)12 cis la chu§n trongL2[0,1])
Vdi m6i tE [0,1] U(y t' thoa It' - ti ~ 0
=> lies,t) - (s, nil ~ 0 =>
yet) - y(t')1~ flk(s, t)- k(s, t')I.lu(s~ds ~ f _
1111
lu(s)lds
ly(t)-y(t)l~ Iluib bIU(S)ldS~ Ilnlb bIU(S)1 ds = IInib =8
(d day ta d5 ap d~lllg ba't d~ng thuG Bun-nha-c6p-xki xem 0.15)
cho tniong h<;1pres) ==1 va g(s) =n(s)
nhli V?y yet) lien t~lC=> Y E L2[0,1]
tUGla loan ttr A hoan loan xac dinh
A tnye'n tlnh la bien nhien
. A lien t~lC: Vl k(s,t)la lien t~lc tren I ; f)~t M=max Ik(s,t) I
(S,t)E I
Ta co :IAu(t)1=If~k(s,t)U(S)dsl ~ !lk(s,t)llu(s)!ds ~ M.f~lu(s)~s
Ap d~lng ba't d~ng tuc Bun-nha-c6p-xki nhli tren
=> IAll(t)1 ~ M.llull2 ~ IAu(tf ~ M211ull~
=> LiAu(t)1 dt ~ M2 Lilull/t =M211ul12
=> f~ IAlI(tt dt ~ Mllul12
=> IIAnl12 ~ Mllnl12
ta d5 co A tuye'n tinh
l~i co them IIAul12~ M.llul12
nen A lien Wc tren L2[0,1] (thl!C sl! ta chi dn kE L2[0,1] va k hi ch~n)
. A-compact:
Gia str B=~l E L2[0,1]: IIull2< 1};Ta phai chung minh A(B) 1a t~p compact tlidng d6i trong L2[0,1]
Theo dinh 19 Frechet-Kolmogorov (XemO.5)
Ta ph~i chung minh 3 dieu :
(i) A(B) 1a hi ch~n trong L2[0,1]
(ii) \18> O\lcocc (0,1), :30 > 0 ;£5< dist(m, {O,l})sao cho
fig (t+h)-g(tfdt <8 \lgEA(B);lhl<£5'
w
(iii) \18 > 0 :3.0cc (0,1) sao cho
[0.1]\0
(i) : Do k 1a lien t~lCtren I nen co the giii sl1
Trang 6f [ flk(s,t)12dS] =M<OO (co thg chqnM= max Ik(s,t)1
U(y g E A(13)=> get) = f~k(s,t)u(s)ds vdi u E 13
=> Ilgll~ =f~ 1£ k(S,t)U(S)dSI2 dt ~ f~[J~ Ik(s, tf ds.f~lu(s)12 dsyt
(do ba't (1~ng thuc Bun-nha-co'p-xki)
=> Ilgll~~ f~[J~lk(S, t)12ds.llull~}t
=>llgll~ ~ f~[f~lk(s,t)12dS}t=M2
=>llgl12 ~M
tuc A(B) bi ch?n trong L2[0,1]
(ii): Do k la lien t\lC dell tren I nen '\II;> 0; I; < 1 381 > 0
sao cho'\lh :Ihl<8) =>l(s,t+h)-(s,t)1 <8 '\Is,t E (0, 1) ma t+h E [0,1]
ta dell phai co:lk(s,t+h)-k(s,t)I<1;
'\Irocc(O,I) gia sa °2 =dist(ro,{O,I})
Gqi8 = mill{8p8J ta co:'\Ig E A(B) '\Ih thoa Ihl< 8
I
I
1
2
Solg(t+h)-g(t)1 dt= f iYc(s,t+h)-k(s,t)Yl(S)d.s dt
m
~ f[£Ik(s,t OJ + h)- k(s,t)lzd.syt
mallullz < 1 (do u E B) nen
(UEB)
(Do Iluliz< 1)
~ fI;Zdt ~ f~ 8Zdt =I;z < I;
OJ
(iii) : '\18>0 3n=
[0+~,I-~ ] CC(0,1) ( ~<!
) ;'\IgEA(B)
[0,1]\0 [0,1]\0 [0,1]\0
f 2 f r7d 2 rl G G
=> Ig(t)ldt~ MZdt=JoZMM2dt+JI-~M2dt=-+-=8
£)g chi tinh thong chinh ctl.a phu'dng trlnh tich phan (2) vdi X= Y =L2[0,1] ta chi dn chi ra day un(s)thoa Au" -> 0 nhung U"-+ 0 trong L2[0,1]
.
2-6.Dinh tv:
:::Ju,,(s) = sinns thoa Au"~ 0 nhung u" -+ 0 trongL2[0,1]
Clu/:nf? mJnh:
. Trudc he't ta chung minh limrl Ices,t) sin nsds = 0,,~ooJo
Do k(s,t) lien ll:lC tren I nen t6n t9-irp kha vi lien t\lc tren I saG cho
Ik(s, t) - rp(s,t)r:s <-Vs, t E [0,1]
X6tf~ rp(s,t)sin nsds' =1,,(t)
(tinh tnl m~t ct'la C1(I)trong C (1))
Trang 7Do tich phan tung ph§n ta du'Qc
1
I
I 1
II ,
In(t) = <p(s,t)cosns 0 +- <p.(s,t)consds
1
= <p(s,t).cosn-<p(O,t) +- <p.(s,t)cosnsds
ma Jim~[lp(1,/)cosn -lp(O,/)] = 0 (lp bi ch?n tren I)
11-t00n
va Jim ~f~<P~(S,t)COSnds=o «p~ EC(I)nen<p' b~ch?n trenI)
~ JimI" (I) = Jim r1lp(s,t)sin nsds = 0,,-too ,,-)00Jo
~ If~lp(s, I) sin nsdsl < ~ khi n dll Ion
Ta co:f~ keg, t)sin nsds s 1£[keg, t) - <pes,t) ]sin nsdsl + If~<pes,t )sin nsdsl
s f~ Ik(s, t) - <p(s, t )Ids + 1£ <p(s, t) sin nsdsl
& &
<-+-=&
2 2
Do cac gioi h~n d (3) va(4) la deu theo t nen ta co
Jim Au" (I) = 0 la dieu theo t
,,-too
Bay giG ta chung minh Au"~ 0 trong L2[0,1]
Tue phiii chung minh IIAu,,112~ 0
Ta co Au,,(t) ~ 0 deu theo t
'11&> 0 :3no Vn> no IAu" (1)1< & (no khong pht,t thuQc t)
I
XetIIAu"ll~ = fo fok(s,/)sin nsds dt < So&2dl
~ IIAu,,112<D khin>no
V~y JimAu" = 0 ,,-too trong e[O,I]
khi n > no
(3)
(4)
Sau cling ta chung minh ll" + 0 trong L2[0,1]
Th~t v~y:
1
Ilu,,112= Lsin2nsds= So 2 ds="2- 4nsin2ns 0
ma !im 2- [sinns]~ = 0
n~0c>4n
~Jimllll"ll2=~;i:O,,-tOO 2 2
Nhu' v~y qua cac djnh 19 tren ta dii tha'y tinh khong chlnhclla phu'dng trinh tich
phan lo~i mQt trong tru'ong hQp X =Y= C[O,I] va tru'ong hQpX = Y = L2[0,1] vdi
nhan k la lien t~lC.
Trong cae phfin san day ta chll ye'u xet phu'dng trlnh Au = g
Trang 8Chtfong 2 : T1nh KhOng Chinh Ci'ia Phtfdng Trlnh T1<:;hPhan Lo~i MQl
Vai A: X ~ Y tuye'n tinh, lien tvc, compact va X = Y = L2[0,l] va ta cling d€ y ding
r}[O,I] la mQtkhong gian Hilbert vai tich va huang (f,g) = J~f(s)g(s)d3; nen ta hay xet
trong traCing hc;fpt6ng quat X,Y la cac khong gian Hilbelt thttc vai tich va huang ( , ) va chuJn tuong ung 11.11
2-7 Nghicm least squares solution va t03n tti A+ :
Nhu ta da bie't trong traCing hc;fp t6ng quat phuong trlnh Au= g co th€
khong t6n t(;li nghi~m u do g~ RangeA ma ne'u co t6n t?i chang nua th1u co
th€ khong ph~lthuQc lien t~lCtheo g
Bay giCita xet phuong trlnh Au = g va gQiu la nghi~m cua phuong trlnh
theo nghla IIAu- gll= inf~IAx- gll,x EX}, vai giiithie'tPgthuQcRangeA
Nghi~m u nhu v~y gQi la nghi~m Least squares solution cua Ax=g
2-7-2 Dinh Iv : Cho phuong trlnh Ax =g
Cac m~nh d~ san la tuong duong
(i) IIAu-gll=inf~IA(x)-gll:XEX}
(ii) A*Au=A*g
(iii) Au = Pg
Trong do: PIa phep chie'u tn,r'c giao tU Y leu RangeA
A*la loan ta lien hc;fpCtlaA (XemO.6)
Clucng
lninh.-. Do tinh cha't clla phep chie'u trttc giao ta tha'y ngay (i)<=:>(Iii)
(i) <=:>(ii)
«=) : A' Au = A' g => IIAu- gll= inf ~IAx- gll: x E g}
ta chI dn chung minh IIAu-gll-IIAx-gll:2:0\lxEX,taco:
IIAx- gl12= IIAx- Au + Au - gl12= !lAx - Aul12+ !lAu - gf + 2(Ax - Au, Au - g)
IIAx-gI12 -IIAu-gI12 =IIA(x-u)112 +2(A(x-u),Au-g)
=> =IIA(x - u)112+ 2(x- u, A' Au- A' g)
ma A*Au-A*g = 0
=>IIAx-gI12 -IIAlI-gI12 =!lA(x-Uf:2:0
V~y IIAx-gll:2:IIAu-gll \Ix EX
(=> ~IAu gll =inf ~IAx - gll : x EX} => A*Au =A*g
Do chung minh (j ph~n tren va do gia thie't
IIAu - gll =inf ~IAx - gll : x EX} ta co:
OsllAx-gl12 -IIAu-gI12 =IIA(x-u)112 +2G-u,A*Au-A*g)
Vdi x=u+tz t>O va z E X ta duc;fc:
0 s IIA(tz)112+ 2(tz, A *Au - A*g) \It> 0, \lz EX
=>ost21IA(z)112+2t(z,A*Au-A*g) \It>O,\lZEX
=> tilAzl12+ 2(z, A *Au - A *g) :2:0 \It> 0, \lz E X
Cho t~O ta duoe:
~,A*Au-A*g)':2:0 \lz E X
\Ix E X
Trang 9Chu'dng2: Tinh Khong Chinh Oh Phlidng TrInh Tich Phan Lol,dM9t
Bling cach cho t < 0 ta se du<;1c:
(z,A.Au-A.g)::;O '\IZEX
=> (z,A Au- A g)= 0 '\Iz E X
=> A.Au- A.g = 0
Nh?n xet :Giii sl\' (1) co nghi~m theo nghla least squares solution tuc PgE RangeA
cling tuc la gE RangeA EB(RangeAY ; GQi U la t?P cac nghi~m do
Ta co : U la t?P 16i, dong Th?t V?y :
. U l6i: La'y UI,U2 E U => A.Aul = A.Au2 = A.g
XetA A(tul + (1- t)u2)= tA.Au, + (1- t)A AU2= tA.g + (1- t)A.g
,.
=Ag \ftE(O,l) => Iu] + (1- I)U2 E U => U l6i
U dong: La'y day un~ u;(unt C U ta phiii chung minh u E U tuc la phiii
chung minh A Au = A g
Ta co :O::;IIA.Au-A.glI=IIA.Au-A.unll
(A Au = A.g do un E U)
=>OsIlA.Au-A.glI=IIA.A(un -u)II::;IIA2111IAllllun-ull~O n ~oo
=> IIA.Au - A gll = 0 => A Au = A.g => u E U
Tli U l6i dong =>t6n t~i duy nha't UoE U sao cho IIuoll sIlull '\I u E U (XemO.7)va Uo
chinh la hlnh chi€u tntc giao Clta0 ten U.
Ta d~H:Uo= A+g N€u ky hi~uD(A+) =RangeA EB(RangeAY
Toan tl\' A+: D(A+)~ X
g H A +g = Uo
Ta se xet mOt s6 tinh cha't Clta A+
.
2-7-3 Dinh 1" :
a) D(A +) = RangeA+ (RangeA)1 la trll m?t trongY
b) Rangc(A +)= (KerAY
c) A+la tuy€n tinh N€u RangeA dong va Ala ddn anh thl A+ / R A =A-I
. / Range
d) A+la bi cMn khi va chIkhiRangeA la dong va tli do SHY ra RangeAhuu h~n
Clu~ng minh:
a) Ta chI dn chung minh D(A-+)= y
1 Chli Y r~ng vlRangeA la dong Ben RangeA EBRangeA = Y
1 ?
\fz E Y ::I!(x, Y)E RangeA x RangeA thoa z= x + y
Do x E Ran geA => ::I( xn n) c Ran geA sao clIo x11~ x
1
YE RangeA => (y,w) = O'\lwE RangeA
=> VI, w) = O\fw E RangeA
=> Y E (RangeAY
=> z =Jim (xn + y) => z E RangeA EB(RangeA Yn->"-'
Trang 10Vf).y Ral1geA ffi(RangeAY = Y tuc D(A+)= Y
b) La'y x E Ral1geA+ Gill sa x = Xl + Xz
Vdi Xl E KerA va X2 E (KerAY
va gia siT x = A+Y vdi y E D(A+)
Ngoai ra Ax=A(XI + Xl)=AXI + Axz = Axz
=> Xz cling la nghi~m Least squares solution
ma X= A+y Hen IIxJ2Zllxl12
Vallxf=llx,+X2112=IIxl112+IIx2112 (Do dinh 19 pythagore ap d\lng cho2vectotntc giao Xl, Xz)
=>IIx2112ZIIXlll2+llx2112=>IIx,112 =0=>x1 =0
=>x = x2 E (KeTAY
La'y x E (KerAY; De tha'y Ax E RangeA => X la least squares solution Ta chi dn chung minh \ix' thoa Ax' = Ax thlllx'llzllxll
Th~t vf).y:Ax' =Ax => A(x' - x) = 0=> x' - X E KerA
Ilxf = Ilx'- x + xl12= IIx'- xll2+ IIxl12(Do dinh 19 pythagore)
=> Ilx'llzllxll
V~y X E Range(A +)
c) A+ la tuye'n tinh
\iY1'Y2 E D(A+ ) ta co: A+Gll + Y2)E Ral1geA+
A+YI + A+Y2E RangeA+
=> A+YI +A+Y2 -A+(YI + Y2)E RangeA+
=> A+Yt +A+Y2 -A+~, + yJE (KerAL)
L1;lico:A(A+y, +A+Y2 -A+(YI +Y2))=PYI +PY2 -P(YI +Y2)
=p(yI + Y2)- p(y I + y 2) (phep chie'u tntc giao P 1a tuye'n tinh)
=0
=> A+y, +A+Y2 -A+(y, + yJEKerA
(1) (2)=> A+y, +A+Y2 -A+~, + Y2)=0=>A+~1 + Y2)=A+Yl +A+Y2
Tuong ttf nhu v~y
Vy E D(A~); VA E R
A+(AY)E Range(A+) va AA+y E RangeA+
=> A+(AY) M+ Y E RangeA+ => A+AY - M+ Y E (KerAY
Ngoai ra: I1(A+AY)= P(AY)= APy
A(M+y)= MA+y = APy
=>A(A+AY)= A(M+y)=> A+AY-M+y E KerA
(3) (4)=>A+Ay-M+y=0=>A+Ay=M+y
Do RangeA 1a dong nenA+ I
R A 1a hoan loan xac dinh 1ai do A don anh Hen
theo dinh nghla cllaA+ La duoc A+I =
(1)
(2)
(3)
(4)