2 Viết phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của đồ thị với trục tung.. Vẽ tiếp tuyến đó lên cùng một hệ trục toạ độ với đồ thị.. Tính diện tích xung quanh và thể tích
Trang 1TRƯỜNG THPT NGUYỄN ĐÁNG KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ
THÔNG
ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông
Đề số 10 Thời gian làm bài: 150 phút, không kể thời gian giao đề
-
-I PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)
Câu I (3,0 điểm): Cho hàm số: có đồ thị là
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số
2) Viết phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của đồ thị với
trục tung Vẽ tiếp tuyến đó lên cùng một hệ trục toạ độ với đồ thị
Câu II (3,0 điểm):
1) Giải phương trình:
2) Tính tích phân:
3) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [–1;1]
Câu III (1,0 điểm):
Cho hình chóp đều S.ABCD có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy
bằng 600 Tính diện tích xung quanh và thể tích của hình nón có đỉnh S và đáy
là đường tròn ngoại tiếp đáy hình chóp đã cho
II PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây
1 Theo chương trình chuẩn
Câu IVa (2,0 điểm): Trong không gian với hệ tọa độ Oxyz, cho hai điểm
và mặt phẳng 1) Viết phương trình mặt cầu có đường kính AB Tính khoảng cách từ tâm I
của mặt cầu đến mặt phẳng
2) Viết phương trình đường thẳng d đi qua tâm I của mặt cầu đồng thời vuông góc với mặt phẳng Tìm toạ độ giao điểm của d và
Câu Va (1,0 điểm): Tìm môđun của số phức:
2 Theo chương trình nâng cao
Câu IVb (2,0 điểm): Trong không gian với hệ toạ độ Oxyz, cho điểm và
đường thẳng d có phương trình d:
1) Hãy tìm toạ độ hình chiếu vuông góc của điểm A trên đường thẳng d.
2) Viết phương trình mặt cầu có tâm là điểm A và tiếp xúc với đường thẳng d.
Câu Vb (1,0 điểm): Giải phương trình sau đây trên tập số phức
Hết
Trang 2-Thí sinh không được sử dụng tài liệu Giám thị coi thi không giải thích gì
thêm.
Họ và tên thí sinh: Số báo danh:
Chữ ký của giám thị 1: Chữ ký của giám thị 2:
Trang 3y
y = 3x + 1
1
3
-2
-1 -1 O 1 2
BÀI GIẢI CHI TIẾT Câu I:
Hàm số
Tập xác định:
Đạo hàm:
Cho
Giới hạn:
Bảng biến thiên
Hàm số ĐB trên khoảng (–1;1) ; NB trên các khoảng (–;–1), (1;+)
Hàm số đạt cực đại tại
đạt cực tiểu tại
Điểm uốn là I(0;1)
Giao điểm với trục tung: cho
Bảng giá trị: x –2 –1 0 1 2
Đồ thị hàm số như hình vẽ:
Ta có,
Phương trình tiếp tuyến cần tìm là :
Câu II:
Điều kiện: x > 0
Khi đó,
(*)
Đặt , phương trình (*) trở thành
Vậy, phương trình đã cho có các nghiệm: và
Xét
Đặt Thay vào công thức tích phân từng phần ta được:
Vậy, I = e + 1
Tìm GTLN, GTNN của hàm số trên đoạn
Trang 460 O
C B
A
D S
Hàm số liên tục trên đoạn
Ta có,
Trong các số trên, số 0 nhỏ nhất và số 4 lớn nhất
Vậy,
Câu III
Gọi O là tâm của hình vuông ABCD Do S.ABCD là hình chóp đều nên
Suy ra, OB là hình chiếu vuông góc của SB lên mp(ABCD)
Diện tích xung quanh của mặt nón: (đvdt)
THEO CHƯƠNG TRÌNH CHUẨN
Gọi I là trung điểm AB ta có
Mặt cầu có đường kính AB, có tâm
Và bán kính
Vậy, phương trình mặt cầu :
Khoảng cách từ tâm I đến mặt phẳng là:
Đường thẳng d đi qua điểm , đồng thời vuông góc với mp
nên có vtcp
PTTS của d:
Thay PTTS của d vào PTTQ của ta được:
Thay vào PTTS của d ta được toạ độ giao điểm của d và mp(P) là
Câu Va:
Trang 5 Vậy,
THEO CHƯƠNG TRÌNH NÂNG CAO
Câu IVb:
Đường thẳng d đi qua điểm và có vtcp
Gọi là hình chiếu v.góc của A lên d thì
Do là hình chiếu vuông góc của A lên d nên ta có , suy ra
Thay t = 2 vào toạ độ ta được là hình chiếu vuông góc của A lên
d.
Mặt cầu có tâm , tiếp xúc với đường thẳng d nên đi qua
Do đó, có bán kính
Vậy, phương trình mặt cầu
Ta có,
Vậy, phương trình đã cho có các nghiệm phức: