1. Trang chủ
  2. » Giáo án - Bài giảng

baiTu giac noi tiep

22 223 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 22
Dung lượng 13,88 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Ta luôn vẽ được một đường tròn đi qua các đỉnh của một tam giác.. Khái niệm tứ giác nội tiếp ?1 a Vẽ đường tròn tâm O rồi vẽ một tứ giác có tất cả các đỉnh nằm trên đường tròn đó.. b Vẽ

Trang 1

0 0

0 0

0

70

.140 2

1 2

1 C

140 220

360 360

220 2.BAD

2

1 BAD

Trang 2

Ta luôn vẽ được một đường tròn đi qua các đỉnh của một tam giác Phải chăng ta cũng làm được như vậy đối với một tứ giác?

?

b)

Trang 4

TIẾT 48 : TỨ GIÁC NỘI TIẾP

1 Khái niệm tứ giác nội tiếp

?1

a) Vẽ đường tròn tâm O rồi vẽ một tứ giác có tất cả

các đỉnh nằm trên đường tròn đó.

b) Vẽ một đường tròn tâm I rồi vẽ một tứ giác có ba

đỉnh nằm trên đường tròn còn đỉnh thứ tư thì không.

Định nghĩa: Một tứ giác có bốn đỉnh nằm trên một đường tròn được gọi là tứ giác nội tiếp đường tròn (gọi tắt là

tứ giác nội tiếp)

Ví dụ: Trong các tứ giác sau, tứ giác nào là tứ giác nội tiếp,

tứ giác nào không là tứ giác nội tiếp

O

C D

P

Hình 44

Tứ giác nội tiếp

Q

I

N M

P

không nội tiếp

Trang 5

0 0

0 0

0 0

0

70

.140 2

1 2

1 C

140 220

360 360

220 2.BAD

2

1 BAD

Trang 6

DỰ ĐOÁN VỀ TỔNG SỐ ĐO HAI GÓC ĐỐI DIỆN CỦA TỨ GIÁC NỘI TIẾP

A

B

C D

N

Q M

Q M

P

O

Trang 7

TIẾT 48: TỨ GIÁC NỘI TIẾP

1 Khái niệm tứ giác nội tiếp

180 180

A C

B D

+ = + =

Trang 8

TIẾT 48 : TỨ GIÁC NỘI TIẾP

1 Khái niệm tứ giác nội tiếp

µA µB µC µD

Bài tập 53 (trang 89-SGK)BiÕt ABCD lµ tø gi¸c néi tiÕp.

H·y ®iÒn vµo « trèng trong b¶ng sau:

x 0

0

0

0 0 0

Trang 9

TIẾT 48 : TỨ GIÁC NỘI TIẾP

1 Khái niệm tứ giác nội tiếp

Định nghĩa:(SGK trang 87)

2 Định lý

Định lý: (SGK trang 88)

GT: Tø gi¸cABCD có B Dµ + =µ 1800KL: Tø gi¸c ABCD nội tiếp

180 0 thì tứ giác đó nội tiếp được đường tròn.

3 Định lý đảo

O

m n

B A

Trang 10

TIẾT 48 : TỨ GIÁC NỘI TIẾP

1 Khái niệm tứ giác nội tiếp

Hình thang Hình thang cân

Hình vuông Hình chữ nhật

Bài tập 2

Trang 11

Bài 3 : Cho tứ giác MNPQ , là góc ngoài tại N và .

Tứ giác MNPQ có nội tiếp được đường tròn không? Vì sao?·PNx PNx Q· = µ

Giải

180

180

o

o

Vậy tứ giác MNPQ nội tiếp đường tròn.

Xét tứ giác MNPQ Ta có:

( kề bù)

x 2 1

M

N

Trang 12

TIẾT 48 : TỨ GIÁC NỘI TIẾP : TỨ GIÁC NỘI TIẾP

HƯỚNG DẪN VỀ NHÀ:

1 Định nghĩa tứ giác nội tiếp;

2 Tính chất của tứ giác nội tiếp;

3 Dấu hiệu nhận biết tứ giác nội tiếp (Định nghĩa và Định lý 3).

I NẮM CHẮC:

II VẬN DỤNG LÝ THUYẾT GIẢI CÁC BÀI TẬP:

1 Bài tập: 54, 55 (Sách giáo khoa trang 89);

2 Chuẩn bị tiết sau Luyện tập.

Trang 13

Chúc quý thầy cô luôn

mạnh khỏe.

Chúc các em học tốt.

Trang 15

Bµi 3: Cho h×nh vÏ H·y t×m trªn h×nh vÏ c¸c tø gi¸c néi tiÕp?

A

E

O

Trang 16

Bài 4: Cho hình vẽ, biết xAD = C Chứng minh tứ giác ABCD

nội tiếp.

A

B

C D

Bài tập:

x

Chứng minh:

O

Vì xAD kề bù với DAB

=> xAD + DAB = 180 0 (t/c hai góc kề bù)

Mà xAD = C (gt)

=> C = DAB = 180 0

Trong tứ giác ABCD có C + DAB = 180 0 (CM trên)

=> Tứ giác ABCD nội tiếp được đường tròn (định lý đảo)

Trang 17

B A

O

Từ đó suy ra và chứa góc bao nhiêu độ?

Trang 18

Người soạn: - Hà Như Th ịnh - THCS Yang Mao

¼ ADC

Trang 19

C D

?

Trang 20

E F

H A

E F

H

Trang 21

Bµi 3: Cho ABC, c¸c ®­êng cao AD, BE, CF c¾t nhau ë H

H·y t×m trªn h×nh vÏ c¸c tø gi¸c néi tiÕp?

A

Bµi tËp:

E F

H

 C¸c tø gi¸c néi tiÕp cã trong h×nh

vÏ lµ:

BDHF, AEHF, CDHE, BFEC, AEDB, CDFA

Ngày đăng: 06/06/2015, 23:00

HÌNH ẢNH LIÊN QUAN

HÌNH HỌC 9 - baiTu giac noi tiep
9 (Trang 3)
Hình bình hànhHình thoi - baiTu giac noi tiep
Hình b ình hànhHình thoi (Trang 10)
w