Lê Xuân Ngọc GV Trường THCS Phước Hưng
Giải bài toán 1 điểm thi lớp 10 Bình Định ( ngày 30 tháng 06 năm 2013 )
Cách 1: Dành cho HS trung bình
Ta chứng minh bài toán phụ sau:
2
x + y ≥ x y+
Thật vậy :
2
2
( ) 0
2
( )
2
2 ( ) 2
x y
x y xy
x y x y
x y
x y
+
Áp dụng kết quả bài toán trên ta có :
2 ( ) 2
2 ( ) 2
2 ( ) 2
Cộng 3 BĐT trên lại ta được :
2
a b b c c a a b b c c a
a b b c c a a b c
Cách 2 : Dành cho HS khá giỏi :
Áp dụng bất đẳng thức Bunhiacôpxki ta có : với các số a, b , x , y bất kì ta có :
ax by+ ≤ a +b x + y
Dấu “ = ” xảy ra khi a b
x y=
Vì a , b , c là các số thực không âm
Nên :
Trang 2Lê Xuân Ngọc GV Trường THCS Phước Hưng
1 1
2 (1)
1 1
2 (2)
1 1
2 (3)
a b a b
b c b c
c a c a
Cộng 3 bất đẳng thức(1) (2) (3) lại ta có :
a +b + b + +c c +a ≥ a b c+ +