1. Trang chủ
  2. » Giáo án - Bài giảng

De on thi GVG cap huyen co dap an

5 442 7

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 81,92 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Nêu các cách thông dụng để xây dựng tình huống gợi vấn đề?. Một xưởng dệt có 3 tổ được phân theo định mức dệt một số tấm vải bằng nhau.. Qua thực tế số tấm vải tổ 3 dệt được bằng số tấm

Trang 1

PHÒNG GD&ĐT THANH CHƯƠNG

KỲ THI LÝ THUYẾT CHỌN GVDG CẤP HUYỆN – BẬC THCS NĂM HỌC 2008-2009

MÔN THI: TOÁN (Thời gian làm bài 150 phút)

Câu I Qua nghiên cứu tài liệu bồi dưỡng thường xuyên môn Toán:

1 Anh(chị) hãy trình bày quan niệm khái quát về dạy học phát hiện và giải quyết

vấn đề?

2 Nêu các cách thông dụng để xây dựng tình huống gợi vấn đề?

Câu II

1 Tìm số nguyên n sao cho: n2 + 9n – 15 chia hết cho n + 11

2 Cho: 2000x = 5000y = 10000z và x – 2y + 5z = 12 Tìm x; y; z

3 Cho số nguyên tố p và số tự nhiên n thỏa mãn: n3 = 2p + 1 Hãy tìm n và p?

Câu III

1 Cho phương trình: (m – 1)x2 – 2(m – 4)x + m – 5 = 0

a Tìm điều kiện của m để phương trình có hai nghiệm phân biệt?

b Tìm hệ thức liên hệ giữa các nghiệm sao cho giá trị hệ thức đó không phụ thuộc

vào m?

2 Cho: x và y là hai số dương thỏa mãn: x2 + y2 = 2

3 Chứng minh rằng: 2

3

1

2 x + ≥ + x y

Câu IV

Một xưởng dệt có 3 tổ được phân theo định mức dệt một số tấm vải bằng nhau

Nhưng khi thực hiện cả ba tổ đều dệt vượt mức kế hoạch nên tổ 1 được thưởng 900 nghìn

đồng, tổ 2 được thưởng 1200 nghìn đồng, tổ ba được thưởng 3300 nghìn đồng Qua thực tế

số tấm vải tổ 3 dệt được bằng số tấm vải dệt được của cả hai tổ kia và bằng 90 tấm Tính số

tấm vải mà mỗi tổ phải dệt theo định mức và số tấm vải mỗi tổ dệt được theo thực tế Biết

rằng giá trị tiền thưởng cho mỗi tấm vải dệt vượt kế hoạch đều bằng nhau

Câu V:

Cho hình vuông ABCD cạnh a Một góc xBy = 45o quay xung quanh B sao cho Bx cắt

cạnh AD tại M, By cắt cạnh CD ở N (M và N không trùng với D) Gọi E, F tương ứng là giao

điểm của BM, BN với AC Trên tia đối của tia AD lấy điểm K sao cho AK = CN Chứng minh:

1 KBM = ∆NBM

2 Tứ giác ABFM, BCNE, MEFN nội tiếp đường tròn

3 MN luôn tiếp xúc với một đường tròn cố định và chu vi của tam giác MND không đổi

Câu VI

Cho tứ giác ABCD(không phải hình vuông) Dựng hình vuông MNPQ sao cho 4

đỉnh liên tiếp của tứ giác nằm trên 4 cạnh liên tiếp của hình vuông?( Chỉ trình bày bước

phân tích và cách dựng)

Hết./

Trang 2

Kỳ thi lý thuyết GVDG cấp huyện – Bậc THCS Năm học 2008-2009

Hướng dẫn chấm và biểu điểm Môn Toán

chú

1

Dạy học nêu vấn đề là “Thầy tổ chức cho trò học tập trong hoạt động và

bằng hoạt động do thầy tạo ra một tình huống hướng dẫn gợi sự tìm hiểu của

học sinh, gợi ra vướng mắc mà họ chưa giải quyết được ngay, nhưng nó liên

hệ với tri thức đã biết, khiến họ thấy triển vọng tự giải đáp được nếu tích cực

suy nghĩ”

0.5

Tình huống gợi vấn đề là tình huống gợi cho học sinh những khó khăn về lý

luận hay thực tiễn mà họ thấy cần thiết và có khả năng vượt qua, nhưng

không phải ngay tức khắc nhờ một thuật giải mà phải trải qua một quá trình

tích cực suy nghĩ, hoạt động để biến đổi đối tượng hoạt động hoặc điều chỉnh

kiến thức có sẵn

0.5

I

2

Các cách thông dụng để tạo tình huống gợi vấn đề:

- Dự đoán nhờ nhận xét trực quan hoặc thực nghiệm

- Lật ngược vấn đề

- Xem xét tương tự

- Khái quát hóa

- Phát hiện sai lầm, tìm nguyên nhân sửa chữa

1.0

2.0

1

Đặt N = n2 + 9n – 15 = n2 + 11n – 2n – 22 + 7 = n(n+11) – 2(n +11) + 7

Suy ra N  ( n + 11) ⇔ 7  ( n + 11) hay n + 11 là ước của 7

n + 11 = 1

7

±

±

10 12 4 18

n

−

⇔ =

−

−

0.75 0.25

0.5 1.5

2

Từ gt suy ra: 2x = 5y = 10z

5 2 1

5 4 5 5 4 5 6

− + Tính được x = 10; y = 4; z = 2

0.25 1.0 0.25

1.5

II

3

Do n3 = 2p +1 ⇒ n lẻ

Đặt n = 2k + 1 ( k ∈N) ⇒ 2p = (2k + 1)3 – 1 = 2k(4k2 + 4k +1 +2k +1 + 1)

2p = 2k(4k2 +6k +3) ⇒ p = k(4k2 +6k +3) Mà p nguyên tố, k ∈N nên có 2

trường hợp xẩy ra:

2

k

=

=

 + + = 

(loại, vì p = 1 không phải nguyên tố)

Vậy n = 3; p = 13

0.25 0.25

0.25

0.25

1.0

Trang 3

III 1a

Để pt có hai nghiệm phân biệt thì m phải thỏa mãn:

'

2

1 0 0 1 ( 4) ( 1)( 5) 0

1

m

m

m

m m

− ≠

 ∆ >

 − − − − >

⇔ − + >  ⇔ ≠ <

0.5

0.75

0.5

1.75

1b Theo Vi-ét ta có:

Trừ theo vế của (1) cho (2): 2.(x1 + x2) – 3 x1x2 = 1 Đây là hệ thức cần tìm

0.5

0.5 0.25

1.25

2

(x + y)2 = ( 1 2

2 .1) 2

(( 2 ) )(( ) 1 )

2

≤ + + (Theo BĐT Bunhia…)

2 2 2 1 2 2 3 ( ) (2 )( 1) ( ).

⇔ + ≤ + + = + (Vì x2 + y2 = 2

3 )

2 3 2

2

⇔ + ≤ + Do x;y dương khai căn 2 vế ta có 3 2 1

2 x + ≥ + x y Dấu bằng xẩy ra 2. 2 1 2 2 2

2

⇔ = ⇔ = ⇔ = thay vào x2 + y2 = 2

3

Ta có: 5x2 = 2

3 ⇔ x = 2

15 ; y = 2

2

15

0.25

0.25

0.25

0.25

1.0

IV

Gọi số tấm vải định mức phải dệt của mỗi tổ là: x (x>0, x Z ∈ )

Tổ 3 dệt vượt mức kế hoạch được: 90 –x (tấm)

Tổ 1 và 2 dệt vượt mức kế hoạch được: 90 – 2x (tấm)

Tiền thưởng của tổ 3 là 3300 nghìn đồng

Tổng tiền thưởng của tổ 1 và 2 là: 900 +1200 = 2100 nghìn đồng

Do giá trị tiền thưởng của mỗi tấm vải dệt vượt kế hoạch đều như nhau nên ta có

pt: 2100 3300

90 2 x = 90 x

Tiền thưởng cho mỗi tấm vải vượt kế hoạch là: 3300:(90-24) = 50 (nghìn)

Tổ 1 dệt vượt mức kế hoạch: 900 : 50 = 18 (tấm) ⇒ thực tế tổ 1 dệt được là: 24 +18

= 42 (tấm)

Tổ 2 thực tế dệt được: 90 - 42 = 48 (tấm)

Vậy theo định mức các tổ phải dệt: 24 tấm

Theo thực tế: Tổ 1 dệt được: 42 (tấm) Tổ 2: 48 tấm

0.5

1.0

0.5

0.5

2.5

Trang 4

45 0

H F

E

K

N

M

Vẽ hình chính xác, đúng:

0.25

0.25

1

Xét hai tam giác vuông: ∆BNC và BKA ∆ có CN = AK(gt), BC =BA(Cạnh hình

vuông)⇒ ∆BNC= ∆BKA(c-g-c) ⇒ BN = BK (1) và CBN = KBA

90o 45o

CBN + ABM = − MBN = (theo t/c hình vuông và gt) nên

45o

KBA + ABM = = MBN (2)

Xét KBM ∆ và ∆NBMcó: BM cạnh chung, kết hợp với (1) và (2)

0.5 0.5 0.5

1.5

2

* FBM = 45 (o gt ); FAM = 45o(T/c đường chéo hình vuông) ⇒ Tứ giác ABFM nội

tiếp

* Tương tự: EBN = ECN = 450 ⇒ Tứ giác BCNE nội tiếp

* MEN = BCN = 90o(Cùng bù BEN ); MFN = BAM = 90o(Cùng bù BFM )

MEN = MFN = 90o⇒ Tứ giác MEFN nội tiếp

0.75 0.5 0.75 2.0

V

3

* Kẻ BH ⊥ MN Từ c/m câu 1: ∆KBM = ∆NBM ⇒ BH = BA = a (Hai đường cao

tương ứng) Mà B cố định, a không đổi ⇒ MN tiếp xúc với đường tròn (B,a) cố

định

* PMND = MD + ND + MN Từ c/m câu 1: ∆KBM = ∆NBM ⇒ KM = NM

PMND = MD + ND + KM = MD + ND + KA + AM mà KA = CN(gt)

PMND = MD + ND + NC + AM = 2a ( Không đổi)

0.5 0.25

0.25 0.5 0.25

1.75

Trang 5

K I

O'

O M

N B

A

D

C

Phân tích: Giả sử hình đã dựng được

Thỏa mãn ĐK bài toán:

AMB = 90onên M thuộc đường tròn

(O;

2

AB

)

Tương tự: P ( '; )

2

CD O

∈ Lấy I là trung điểm cung AB(về phía

tứ giác) ⇒ I ∈ MP

Tương tự lấy K trung điểm CD ⇒ K

MP

Vậy M,P là giao điểm của IK với (O)

và (O’) về phía ngoài tứ giác

Phân tích tương tự đối với 2 điểm N,Q

0.25

0.5

0.25

1.0

VI

Cách dựng

- Dựng đường tròn (O;

2

AB

)

- Dựng đường tròn ( '; )

2

CD O

- Dựng trung điểm I của cung AB, trung điểm K của cung CD(về phía tứ giác)

- Đường thẳng IK cắt (O;

2

AB

) tại M và ( '; )

2

CD

O tại P

- Dựng tương tự đối với 2 đỉnh N và Q

- Nối các điểm M,N,P,Q ta được hình vuông cần dựng

0.25

0.25 0.25 0.25

1.0

(Các cách giải khác nhưng đúng yêu cầu đề ra vẫn chấm điểm tối đa, phần hình học phải có hình vẽ.)

Ngày đăng: 28/10/2014, 01:00

TỪ KHÓA LIÊN QUAN

w