Journal of Materials Science, 2001,.. char-acteristics.of.BICUVOX.1.solid.electrolyte,.Journal of Materials Science, 2006,.41,.. Journal of Solid State Electrochemistry, 2001,... a.new.o
Trang 1An oxygen ion conductor can be tailored because of the geometrical and
chemi-cal flexibility of the perovskite structure This is borne out by (La,Sr)(Mg,Ga)O3
(1) Ln(Al,In,Sc,Y)O3-based materials, (2) the doped and undoped brownmillerite
Ba2In2O5,.and.(3).La2Mo2O9 The.transference.number.of.doped.La2Mo2O9.can.be
higher than 0.99 in an oxidant environment The drawbacks of La2Mo2O9-based
Trang 2has been reported in the literature, however, considerable interdiffusion between.
ZrO2- and CeO2-based materials occurs at elevated temperatures (>1,400°C).58–61
Solid.solutions.between.ZrO2.and.CeO2
5.15 5.20 5.25 5.30 5.35 5.40
YSZ (111) CGO
fIgure 0. A plot of d spacing for CGO films on YSZ substrates as a function of
anneal-ing temperature The inset illustrates the XRD of CGO and YSZ powders annealed at various
temperatures 62
Trang 3by.plotting.ln(σT).versus.1/T.for.CGOxYSZ1–x
.at.high.oxygen.activity;.the.preex-ponential factor,.σ_, appears to be independent of the CGO ratio Therefore, the
observed decrease in conductivity, in particular at the intermediate-temperature
Trang 4Kosacki et al.67–69,75 studied the electrical conductivity of yttria- and
scandia-doped zirconia thin films deposited onto either single-crystal alumina or
magne-sia substrates Their study showed that the electrical conductivity of YSZ can be
-2.5 -2.0 -1.5 -1.0 -0.5
25mol% CGO 50mol% CGO 75mol% CGO CGO YSZ
Trang 710.4.5 G rain b Oundary e FFeCtS
fIgure 0. Relative expansion of GDC10 and GDC 20 (After Yasuda, I and Hishinuma,
M., Electrochem Soc Proc., 97, 178, 1997.)
Trang 8500 o C
Trang 9in an oxidizing and reducing environment Doped CeO2, on the other hand, is a.
of Applied Ceramic Technology, 2004,.1,.5–15.
3 Steele, B.C.H., Material science and engineering: the enabling technology for the.
commercialisation of fuel cell systems, Journal of Materials Science, 2001, 36,.
Alcaide,.F.,.Cabot,.P.L.,.and.Brillas,.E.,.Fuel.cells.for.chemicals.and.energy.cogenera-tion,.Journal of Power Sources, 2006,.153,.47–60.
13 Paydar, M.H., Hadian, A.M., and Fafilek, G., A new look at oxygen pumping
char-acteristics.of.BICUVOX.1.solid.electrolyte,.Journal of Materials Science, 2006,.41,.
1953–1957.
14 Kharton,.V.V.,.Naumovich,.E.N.,.Yaremchenko,.A.A.,.and.Marques,.F.M.B.,.Research.
on the electrochemistry of oxygen ion conductors in the former Soviet Union IV
Bismuth oxide-based ceramics, Journal of Solid State Electrochemistry, 2001, 5,.
Trang 1018 Yang,.J.H.,.Wen,.Z.Y.,.Gu,.Z.H.,.and.Yan,.D.S.,.Ionic.conductivity.and.micro.structure.
of.solid.electrolyte.La 2 Mo 2 O 9.prepared.by.spark-plasma.sintering,.Journal of the
Euro-pean Ceramic Society, 2005,.25,.3315–3321.
23 Takamura,.H and.Tuller,.H.L.,.Ionic.conductivity.of.Gd2GaSbO7-Gd2Zr2
O7.solid.solu-tions.with.structural.disorder,.Solid State Ionics, 2000,.134,.67–73.
compounds,.Solid State Ionics, 1992,.52,.135–146.
29 Sansom, J.E.H., Najib, A., and Slater, P.R., Oxide ion conductivity in mixed
Si/Ge-based.apatite-type.systems,.Solid State Ionics, 2004,.175,.353–355.
30 Yaremchenko, A.A., Shaula, A.L., Kharton, V.V., Waerenborgh, J.C., Rojas, D.P.,.
Patrakeev, M.V., and Marques, F.M.B., Ionic and electronic conductivity of La9.83
-xPrxSi4.5Fe1.5O26.+/–delta.apatites,.Solid State Ionics, 2004,.171,.51–59.
31
Arachi,.Y.,.Sakai,.H.,.Yamamoto,.O.,.Takeda,.Y.,.and.Imanishai,.N.,.Electrical.conduc-tivity.of.the.ZrO2-Ln(2)O(3).(Ln.=.lanthanides).system,.Solid State Ionics, 1999,.121,.
133–139.
32
Steele,.B.C.H.,.Materials.for.IT-SOFC.stacks.35.years.R&D:.the.inevitability.of.gradu-alness?.Solid State Ionics, 2000,.134,.3–20.
33 Steele,.B.C.H.,.Appraisal.of.Ce 1–y Gd y O 2–y/2 electrolytes.for.IT-SOFC.operation.at.500.
degrees.C,.Solid State Ionics, 2000,.129,.95–110.
34 Steele,.B.C.H.,.Oxygen-transport.and.exchange.in.oxide.ceramics Journal of Power
Sources, 1994,.49,.1–14.
35 Inaba,.H and.Tagawa,.H.,.Ceria-based.solid.electrolytes:.review,.Solid State Ionics,
1996,.83,.1–16.
36 Shannon, R.D., Revised effective ionic-radii and systematic studies of interatomic.
distances.in.halides.and.chalcogenides,.Acta Crystallographica Section A, 1976,.32,.
751–767.
37 Azad,.A.M.,.Larose,.S.,.and.Akbar,.S.A.,.Bismuth.oxide-based.solid.electrolytes.for.
fuel-cells,.Journal of Materials Science, 1994,.29,.4135–4151.
38 Wachsman,.E.D.,.Effect.of.oxygen.sublattice.order.on.conductivity.in.highly.defective.
fluorite.oxides,.Journal of the European Ceramic Society, 2004,.24,.1281–1285.
39 Wachsman, E.D., Functionally gradient bilayer oxide membranes and electrolytes,.
Solid State Ionics, 2002,.152,.657–662.
Trang 1145 Boyapati, S., Wachsman, E.D., and Chakoumakos, B.C., Neutron diffraction study.
of occupancy and positional order of oxygen ions in phase stabilized cubic bismuth.
oxides,.Solid State Ionics, 2001,.138,.293–304.
52 Ishihara, T., Matsuda, H., and Takita, Y., Doped LaGaO3 perovskite-type oxide as.
a.new.oxide.ionic.conductor,.Journal of the American Chemical Society, 1994,.116,.
Trang 1258 Eguchi,.K.,.Akasaka,.N.,.Mitsuyasu,.H.,.and.Nonaka,.Y.,.Process.of.solid.state.reaction.
between.doped.ceria.and.zirconia,.Solid State Ionics, 2000,.135,.589–594.
59 Lee, C.H and Choi, G.M., Electrical conductivity of CeO2-doped YSZ, Solid State
Ionics, 2000,.135,.653–661.
60 Tsoga, A., Naoumidis, A., and Stover, D., Total electrical conductivity and defect.
structure of ZrO2-CeO2-Y2O3-Gd2O3 solid solutions, Solid State Ionics, 2000, 135,.
ionic-conductivity.in.cerium.dioxide,.Solid State Ionics, 1983,.8,.109–113.
64 Kilner,.J.A.,.Fast.oxygen.transport.in.acceptor.doped.oxides,.Solid State Ionics, 2000,.
Balducci,.G.,.Kaspar,.J.,.Fornasiero,.P.,.Graziani,.M.,.Islam,.M.S.,.and.Gale,.J.D.,.Com-puter.simulation.studies.of.bulk.reduction.and.oxygen.migration.in.CeO2-ZrO2.solid.
solutions,.Journal of Physical Chemistry B, 1997,.101,.1750–1753.
69 Kosacki, I., Suzuki, T., Petrovsky, V., and Anderson, H.U., Electrical
conductiv-ity of nanocrystalline ceria and zirconia thin films, Solid State Ionics, 2000, 136,.
1225–1233.
70 Zhang,.Y.W.,.Jin,.S.,.Yang,.Y.,.Li,.G.B.,.Tian,.S.J.,.Jia,.J.T.,.Liao,.C.S.,.and.Yan,.C.H.,.
Electrical conductivity enhancement in nanocrystalline (RE 2 O 3 )(0.08)(ZrO 2 )(0.92).
(RE.=.Sc,.Y).thin.films,.Applied Physics Letters, 2000,.77,.3409–3411.
71 Knoner, G., Reimann, K., Rower, R., Sodervall, U., and Schaefer, H.E., Enhanced.
oxygen diffusivity in interfaces of nanocrystalline ZrO 2 center dot Y2O3,
Proceed-ings of the National Academy of Sciences of the United States of America, 2003,.100,.
3870–3873.
72 Mondal, P and Hahn, H., Investigation of the complex conductivity of
nanocrystal-line.Y2O3-stabilized.zirconia,.Berichte Der Bunsen-Gesellschaft-Physical Chemistry
Chemical Physics, 1997,.101,.1765–1768.
73 Jiang, S.S., Schulze, W.A., Amarakoon, V.R.W., and Stangle, G.C., Electrical
prop-erties of ultrafine-grained yttria-stabilized zirconia ceramics, Journal of Materials
Research, 1997,.12,.2374–2380.
74 Guo,.X.,.Vasco,.E.,.Mi,.S.B.,.Szot,.K.,.Wachsman,.E.,.and.Waser,.R.,.Ionic.conduction.
in.zirconia.films.of.nanometer.thickness,.Acta Materialia, 2005,.53,.5161–5166.
75 Kosacki, I., Petrovsky, V., and Anderson, H.U., Band gap energy in nanocrystalline.
ZrO2:.16%Y.thin.films,.Applied Physics Letters, 1999,.74,.341–343.
76
Mogensen,.M.,.Sammes,.N.M.,.and.Tompsett,.G.A.,.Physical,.chemical.and.electro-chemical.properties.of.pure.and.doped.ceria,.Solid State Ionics, 2000,.129,.63–94.
Trang 1377 Yasuda, I and Hishinuma, M., Electrical conductivity, dimensional instability and.
internal.stresses.of.CeO2-Gd2O3.solid.solutions,.Electrochemical Society Proceedings,
Trang 14Protection of Metallic Interconnects in Solid-Oxide Fuel Cells
Zhenguo Yang, Jeffry W Stevenson,
and Prabhakar Singh
ConTenTs
11.1 Introduction 229
11.2 Corrosion.of.Oxidation-Resistant.Alloys.under.SOFC.Interconnect Exposure.Conditions 232
11.2.1.Oxidation.and.Corrosion.at.Metal–Gas.Interfaces 232
11.2.1.1 Oxidation.in.Air,.Cathode-Side.Environment 233
11.2.1.2.Oxidation.and.Corrosion.in.Fuel,.Anode-Side Environment 233
11.2.1.3.Oxidation/Corrosion.under.Air–Fuel.Dual-Exposure Conditions 235
11.2.2.Corrosion.at.Interfaces.with.Adjacent.Components 239
11.3 Surface.Modification.for.Improved.Stability 241
11.4 Summary 245
References 245
Energy.security.and.increased.concern.over.environmental.protection.have.spurred
a.dramatic.worldwide.growth.in.research.and.development.of.fuel.cells,.which.elec-trochemically.convert.incoming.fuel.into.electricity.with.no.or.low.pollution Fuel
cell.technology.has.become.increasingly.attractive.to.a.number.of.sectors,.including
utility,.automotive,.and.defense.industries Among.the.various.types.of.fuel.cells,
solid-oxide.fuel.cells.(SOFCs).operate.at.high.temperature.(typically.650.to.1,000°C)
and have advantages in terms of high conversion efficiency and the flexibility of
using hydrocarbon fuels, in addition to hydrogen.1–5 The high-temperature
opera-tion, however, can lead to increased mass transport and interactions between the
surrounding environment and components that are required to be stable during a
lifetime.of.thousands.of.hours.and.up.to.hundreds.of.thermal.cycles For.stacks.with
relatively.low.operating.temperatures.(<800ºC),.the.interconnects.that.are.used.to
Trang 15} PEN
Ai r or O2, H2O
Seals
Electricalcontacts
H2, CO, H2O, CO2
Repeating Unit-PEN
Trang 16chromite parts at reasonable sintering temperatures,1,6–9 and the tendency of the.
chromite interconnect to partially reduce at the fuel gas–interconnect interface,
causing.the.component.to.warp.and.the.peripheral.seal.to.break.1,10.The.recent.trend
in developing lower-temperature (650 to 800°C), more cost-effective cells that
utilize anode-supported, thin electrolytes11,12 or new electrolytes with improved
and.silica.(SiO2).are.electrically.insulating,21,22.alloys.that.form.a.semiconductive
chromia.scale.(with.a.conductivity.of.~1.0.×.10–2.S-cm–1at.800°C.in.air21,23–25).are
NiB SA
NiB SA
CrBA
CrBA: base alloys
Cr-FSS: Ferritic
ASS: Austenitic stainless steels stainless steels
FeBSA: Fe-Ni base superalloys
NiBSA: Ni-Fe base superalloys
NiB SA
NiB SA
CrBA
fIgure . Schematic of alloy options for SOFC applications.
Trang 17. CorrosIon of oxIdaTIon-resIsTanT alloys
under sofC InTerConneCT exPosure CondITIons
TeC (0–·k–
oxidation resistance
19.0(RT.
800°C)
Trang 18studies have also been performed to determine the oxidation/corrosion behavior.
Trang 19found in air, although their morphology and minor components can be different
found that in carbon-bearing gas environments, alloys, including Fe(-Ni)-Cr- and
Ni-Fe-Cr-base alloys, are susceptible to metal dusting at temperatures in the 400
Recently, several publications reported and discussed the danger of encountering
carbon-induced corrosion for oxidation-resistant alloys under SOFC interconnect
exposure conditions at the anode side.59,60 Overall, it appears that metal dusting
is likely to occur in a hydrocarbon fuel with a carbon activity of ≥1 Toh et al.60
reported.metal.dusting.of.some.selected.oxidation-resistant.alloys.tested.in.CO–26%
H2–6%.H2
O.(vol%),.corresponding.to.a.carbon.activity.of.2.9,.at.650°C.under.ther-mal cycling The resistance to metal dusting depended on alloy composition For
Trang 21fIgure . SEM cross-sections of AISI 430 coupons after 300 h of oxidation at 800°C
in air under different exposure conditions: (a) both sides exposed to air and (b) on the air side
of the air–(H 2 + 3% H 2 O) exposure 64
Trang 22and increased water vapor partial pressure on the air side E-brite, with 27% Cr,.
appeared.to.be.more.resistant.to.formation.of.hematite.nodules.at.800ºC.in.the.scale
grown.on.the.air.side.of.the.air–hydrogen.sample,.though.the.surface.microstruc-ture of the scale was different from the air-only sample At higher temperatures
(900°C),.Meier.et.al.96.observed.iron.oxide.formation.in.the.scale.grown.on.the.air
side of E-brite during air–hydrogen dual exposures Similar anomalous oxidation
behavior.was.also.observed.by.Ziomek-Moroz.et.al.68.and.Holcomb.et.al.69.not.only
exposure But unlike the ferritic chromia-forming alloys, nickel and Ni-Cr-base
alloys formed a uniform, well-adherent scale on the air side of the air–hydrogen
Trang 23fIgure . Microstructures of cross-sections of silver tube walls after testing at 700°C
for 100 h: (a) with flow of (H2 + 3% H2 O) and (b) with flow of air 66
Trang 24ponents.involves.rigid.glass–ceramic.seals,.including.those.made.from.barium–cal-cium–aluminosilicate (BCAS) base glasses.102–106 Previous work107–109 found that.
ferritic stainless steel interconnect candidates reacted extensively with the BCAS
Trang 25been reported to react with interconnect alloys Reaction between manganites.
and chromia-forming alloys led to formation of a manganese-containing
spi-nel interlayer that appeared to help minimize the contact ASR.115–117 Sr in the
BaCrO 4
C-C
446
Glass ceramics
BaCrO 4
C-C
fIgure . Interfacial reactions between G18 sealing glass and 446 stainless steel (a) A
schematic of the joined couple (446/G18/446) and SEM images of the interfacial cross-section
(b) at the edge area A, (c) at the interior region, and (d) from the region marked C in (b) The
446 coupons (12.7 × 12.7 × 0.5 mm) were joined to the G18 through heat treatment at 850°C
for 1 h, followed by 750°C for 4 h in air 107
Trang 26Chromia forming alloy
O
M O
Conductive coat Sub-scale
Chromia forming alloy
O
M O
fIgure . Schematic of mass transport in a conductive oxide protection layer on a
chro-mia-forming alloy.
Trang 27conductive This conductivity requirement differentiates the interconnect
protec-tion layer from many traditional surface modifications as well as nonactive areas
Early reported examples of protection layers include overlay coatings of the
conductive perovskite compositions that are often used as cathode and
intercon-nect.materials.in.SOFCs For.example,.Linderoth122.and.Sakai.et.al.123.reported.the
effectiveness.of.a.(La,Sr)CrO3.protection.layer.on.Ducralloy.Cr5FeY2O3
.in.improv-ing.its.electrical.performance.and.surface.stability Kadowaki.et.al.124.found.that
(La,Sr)CoO3.protection.layers.fabricated.via.low-pressure.plasma.spray.on.Ni-Cr
base.alloys.effectively.improved.the.alloy.interconnect.electrical.conductivity In
contrast,.Batawi.et.al.125.evaluated.the.performance.of.(La,Sr)CrO3,.(La,Sr)CoO3,
and.(La,Sr)MnO3.protection.layers.thermally.sprayed.onto.both.Cr5FeY2O3
.and.Ni-Cr.base.alloys,.indicating.that.all.coatings.increased.the.alloy.oxidation.rate As
pointed.out.by.the.authors,.the.(La,Sr)CoO3.coatings.were.ineffective.because.of
rapid.diffusion.of.chromium.through.the.coatings.and.formation.of.thick.interfacial
reaction.layers,.while.the.(La,Sr)MnO3.protection.layers.on.Cr5FeY2O3.exhibited
the best performance due to the sluggish kinetics of interlayer growth and slow
diffusion of chromium through the coatings Quadakkers et al.117 also observed
significant transport of chromium into plasma-sprayed (La,Sr)CoO3 coatings on
Cr5FeY2O3 alloy Recent work by Fujita et al.126 found that (La,Sr)CoO3
protec-tion.layers.spin.coated.onto.ferritic.stainless.steels.AISI.430.and.ZMG.232.helped
improve.the.alloy.interconnect.surface.stability.and.cell.performance.by.reducing
chromium.poisoning Overall,.it.appears.that.the.chromites,.which.exhibit.a.lower