Effect of gas pressure on critical stress intensity factor for crack extension in loading, while the carbon steel filled symbols was tested under rising displacement loading... Effect o
Trang 11 Iwahara,.H.,.Yajima,.T.,.and.Uchida,.H Solid State Ionics,.70/71,.1994,.267-271.
2 Iwahara,.H Solid State Ionics,.77,.1995,.289-298
3 Guan,.J.,.Dorris,.S E.,.Balachandran,.U.,.and.Liu,.M Solid State Ionics,.100,.1997,.
45-52
4 Guan,.J.,.Dorris,.S E.,.Balachandran,.U.,.and.Liu,.M J Electrochem Soc.,.145,.1998,.
1780-1786
5 Guan,.J.,.Dorris,.S E.,.Balachandran,.U.,.and.Liu,.M Ceram Trans.,.92,.1998,.1-9.
6 Balachandran,.U.,.Lee,.T H.,.and.Dorris,.S E In.Proceedings 16th Annual
Interna-tional Pittsburgh Coal Conf.,.Pittsburgh,.PA,.October.11-15,.1999.
7 Balachandran,.U.,.Lee,.T H.,.Zhang,.G.,.Dorris,.S E.,.Rothenberger,.K S.,.Howard,.
B H.,.Morreale,.B.,.Cugini,.A V.,.Siriwardane,.R V.,.Poston,.J A Jr.,.and.Fisher,.E
P In.Proceedings 26th International Technical Conference on Coal Utilization and
Fuel Systems, Clearwater, FL, March 5-8, 2001 Gaithersburg, MD: Coal Technical.
Trang 2Gas on Steel Vessels and Pipelines
Brian P Somerday and Chris San Marchi
ConTenTs
7.1 Introduction 158
7.2 Review.of.Hydrogen.Gas.Vessels.and.Pipelines 159
7.2.1 Hydrogen.Gas.Vessels 159
7.2.1.1 Material.Conditions.Affecting.Vessel.Steel.in Hydrogen 159
7.2.1.2 Environmental.Conditions.Affecting.Vessel.Steel.in Hydrogen 160
7.2.1.3 Mechanical.Conditions.Affecting.Vessel.Steel.in Hydrogen 160
7.2.2 Hydrogen.Gas.Pipelines 161
7.2.2.1 Material.Conditions.Affecting.Pipeline.Steel.in Hydrogen 161
7.2.2.2 Environmental.Conditions.Affecting.Pipeline.Steel.in Hydrogen 162
7.2.2.3 Mechanical.Conditions.Affecting.Pipeline.Steel.in Hydrogen 162
7.3 Importance.of.Fracture.Mechanics 162
7.4 Vessels.and.Pipelines.in.Hydrogen.Energy.Applications 164
7.4.1 Effect.of.Gas.Pressure 165
7.4.2 Effect.of.Gas.Impurities 166
7.4.3 Effect.of.Steel.Strength 169
7.4.4 Effect.of.Steel.Composition 171
7.4.5 Effect.of.Welds 173
7.4.6 Effect.of.Mechanical.Loading 174
7.5 Conclusion 176
Acknowledgments 177
References 177
Trang 3The.objective.of.this.chapter.is.to.provide.guidance.on.the.application.of.car-bon and low-alloy steels for hydrogen gas vessels and pipelines, emphasizing the.
variables that influence hydrogen embrittlement Section 7.2 reviews published
is.anticipated.that.hydrogen.gas.vessels.and.pipelines.will.be.subjected.to.operat-ing conditions that are outside the windows of experience Thus, section 7.4 will
demonstrate trends in hydrogen embrittlement susceptibility for steels as a
func-tion of important material, environmental, and mechanical variables The metric
Trang 5One of the detrimental mechanical loading conditions for steel hydrogen gas.
vessels is cyclic stress, which drives fatigue crack propagation.4 Pressure cycling
0.90–1.20 0.15–0.25 0.30–0.37 0.50–0.80 0.15–0.35 0.025.max 0.025.max Balance
a The composition limits for 34CrMo4 vary slightly among European countries The specification in.
table.7.1.is.from.Germany 4 The.34CrMo4.steel.composition.is.almost.identical.to.either.AISI.4130.or.
AISI.4135.steel 47
b Limits.for.P.and.S.in.new.hydrogen.gas.vessels.are.0.025.wt%.
Trang 6Grade.X42 0.22.max 1.30.max 0.025.max 0.015.max 0.15.max Balance
Grade.X52 0.22.max 1.40.max 0.025.max 0.015.max 0.15.max Balance
a Product.Specification.Level.2.composition.for.welded.pipe 49
b
Recommended.maximum.concentrations.of.P.and.S.are.0.015.and.0.01.wt%,.respectively,.for.mod-ern.steels.in.hydrogen.gas.service 5
Trang 7sources, including welds, corrosion, and third-party damage.5,6 Welds are of
par-ticular concern since steel pipelines can require two different welds: longitudinal
Trang 9The.stress.intensity.factor.range,.∆K,.is.defined.as.(K max –.K min ),.where.K max and.K min.
are.the.maximum.and.minimum.values.of.K,.respectively,.in.the.load.cycle K max and
hydrogen energy aPPlICaTIons
Trang 10property equation 7.6 shows that as fugacity (pressure) increases, the quantity.
of atomic hydrogen dissolved in the steel increases; consequently, embrittlement
becomes.more.severe This.trend.is.illustrated.from.K TH ,.K IH ,.and.da/dN
data Fig-ure.7.1 shows data for both low-alloy steels (K TH ) and carbon steels (K IH), where
critical K values decrease as hydrogen gas pressure increases for both types of.
steel.10,29.Data.for.a.low-alloy.steel.in.figure.7.2.demonstrate.that.da/dN.measured.
at.a.fixed.stress.intensity.factor.range,.∆K,.continuously.increases.as.hydrogen.gas.
pressure.increases.30.Finally,.figure.7.3.shows.that.increasing.hydrogen.gas.pressure
also.accelerates.da/dN.in.a.carbon.steel,.but.only.at.lower.∆K.values.31
Trang 11180Low-Alloy and Carbon Steels
AISI 4130 steel ( uts=820 MPa) AISI 4145 steel ( uts=895 MPa) AISI 4147 steel ( uts=925 MPa) ASTM A516 steel ( uts=530 MPa)
fIgure . Effect of gas pressure on critical stress intensity factor for crack extension in
loading, while the carbon steel (filled symbols) was tested under rising displacement loading
Trang 12100 ASME SA105 steel uts = 460 MPa frequency = 0.1 Hz load ratio = 0.1
70 MPa H2 gas
7 MPa H2 gas
fIgure . Effect of hydrogen gas pressure on fatigue crack growth rate (da/dN) vs stress
Hydrogen Gas Pressure (MPa)
helium hydrogen
HY-100 Steeluts = 855 MPa
∆K = 55 MPa m
frequency = 1 Hz
fIgure . Effect of hydrogen gas pressure on fatigue crack growth rate (da/dN) at
Trang 132.25Cr - 1Mo Steel
uts = 555 MPa 1.1 MPa H2 gas
∆K = 24 MPa m
frequency = 5 Hz load ratio = 0.1
CO 0.99% 1.10%SO2 0.03%H2O 0.98%CH4 1.01%CO2 CH1.04%3SH 0.10%H2S
fIgure . Effect of gas additives on the fatigue crack growth rate (da/dN) at constant
Trang 147.4.3 e FFeCt OF S teel S trenGth
Hydrogen embrittlement in steels generally becomes more severe as material
strength.increases This.behavior.arises.because.the.magnitude.of.stress.amplifica-tion.near.defects.is.proportional.to.material.strength These.high.stresses.combined
with.the.resulting.enhanced.hydrogen.dissolution.increase.susceptibility.to.hydrogen
embrittlement The.impact.of.material.strength.on.hydrogen.embrittlement.is.exem-plified.by.the.K TH.data.in.figure.7.5.10.Values.of.K TH.measured.for.low-alloy.steels.in
hydrogen.gas.decrease.as.tensile.strength,.σuts,.increases A.similar.trend.is.expected
120 Low-Alloy and Carbon Steels
41 MPa H 2 gas
AISI 4130 steel AISI 4145 steel AISI 4147 steel
fIgure . Effect of tensile strength (σuts) on critical stress intensity factor for crack
Trang 151000 Low-Alloy Steels frequency = 1 Hz load ratio = 0.007 HY-80 steel
uts = 780 MPa 0.34 MPa H2 gas HY-130 steel
uts = 1020 MPa 0.34 MPa H2 gas
HY- 80 steel air
HY-130 steel air
fIgure . Fatigue crack propagation rate (da/dN) vs stress intensity factor range (∆K)
relationships measured in low-pressure hydrogen gas for two low-alloy steels with different
Trang 16and pipelines in the hydrogen energy infrastructure, where high-strength
materi-als may be attractive Increasing the operating pressures of hydrogen gas vessels
B7 Mn=0.007 Si=0.002 P=0.003 S=0.003 Mn=0.02
Si=0.01 P=0.014 S=0.003 Mn=0.09 Si=0.01 P=0.012 S=0.005 Mn=0.02 Si=0.27 P=0.0036 S=0.005
Mn=0.23 Si=0.01 P=0.009 S=0.005
B2 Mn=0.68 Si=0.08 P=0.009 S=0.016
Mn=0.72 Si=0.01 P=0.008 S=0.005
B6 Mn=0.72 Si=0.32 P=0.003 S=0.005
Mn=0.75 Si=0.20 P=0.006 S=0.004
fIgure . Effect of manganese, silicon, phosphorus, and sulfur content on critical stress
tested in low-pressure hydrogen gas.
Trang 17sulfur,.and.phosphorus.in.a.low-alloy.steel.40.Figure.7.8.shows.that.K TH.decreases.
as manganese increases from 0.07 to 2.65 wt% Systematic variations in sulfur
and phosphorus concentrations in the range 0.002 to 0.027 wt% did not affect
Mn steels ( uts=1305 MPa)
Co steels ( uts=1415 MPa)
fIgure . Effect of manganese or cobalt content on critical stress intensity factor for
low-pres-sure hydrogen gas.
Trang 197.4.6 e FFeCt OF m eChaniCal l OadinG
Hydrogen embrittlement in steels can be manifested under different modes of
Finally, figure.7.11 shows that fatigue crack growth rates in hydrogen gas do not
depend.on.load.ratio.(i.e.,.K min /K max).for.values.up.to.0.4.46.However,.over.this.range
static-load KIH = 28 to 40 MPa m
fIgure . Effect of loading rate (dK/dt) on critical stress intensity factor for crack
hydro-gen gas.
Trang 20fIgure .0 Effect of load cycle frequency on fatigue crack growth rate (da/dN) vs stress
Trang 21fIgure . Effect of load ratio (ratio of minimum load to maximum load) on fatigue
crack growth rate (da/dN) at fixed stress intensity factor range (∆K) in hydrogen gas for a
Trang 223 .Nelson,.H.G.,.Hydrogen.embrittlement,.in.Treatise on Materials Science and
Technol-ogy: Embrittlement of Engineering Alloys,.Vol 25,.Briant,.C.L and.Banerji,.S.K.,.Eds.,.
related fracture: a review, in Second International Conference on
Corrosion-Defor-mation Interactions, Magnin, T., Ed., The Institute of Materials, London, 1997, pp
Thompson,.A.W and.Bernstein,.I.M.,.The.role.of.metallurgical.variables.in.hydrogen-assisted.environmental.fracture,.in.Advances in Corrosion Science and Technology,.
Vol 7, Fontana, M.G and Staehle, R.W., Eds., Plenum Press, New York, 1980, pp
53–175.
Trang 23Swisher,.J.H.,.Hydrogen.compatibility.of.structural.materials.for.energy-related.appli-cations,.in.Effect of Hydrogen on Behavior of
Materials,.Thompson,.A.W and.Ber-nstein, I.M., Eds., The Metallurgical Society of AIME, Warrendale, PA, 1976, pp
558–577.
20 .Thompson, A.W., Structural materials use in a hydrogen energy economy,
Interna-tional Journal of Hydrogen Energy,.2,.299–307,.1977.
21
Thompson,.A.W and.Bernstein,.I.M.,.Selection.of.structural.materials.for.hydrogen.pipe-lines.and.storage.vessels,.International Journal of Hydrogen Energy,.2,.163–173,.1977.
22 SanMarchi, C and Somerday, B.P., Technical Reference for Hydrogen
27 Standard Test Method: Laboratory Testing of Metals for Resistance to Sulfide Stress
Cracking and Stress Corrosion Cracking in H 2 S Environments,.Standard.TM0177-96,.
NACE.International,.Houston,.1996.
28 Standard Test Method for Determining Threshold Stress Intensity Factor for
Environ-ment-Assisted Cracking of Metallic Materials, Standard E 1681-03, ASTM
33 Clark,.W.G and.Landes,.J.D.,.An.evaluation.of.rising.load.KIscc.testing,.in.Stress
Cor-rosion: New Approaches,.ASTM.STP.610,.ASTM,.Philadelphia,.1976,.pp 108–127.
Trang 24crack.growth.in.a.low.alloy.steel,.in.Stress Corrosion Cracking and Hydrogen
Embrit-tlement of Iron Base Alloys,.Staehle,.R.W.,.Hochmann,.J.,.McCright,.R.D.,.and.Slater,.
Trang 26barrier Coatings
C.H Henager, Jr.
ConTenTs
8.1 Introduction 181
8.2 Background 181
8.3 Historical.Overview 182
8.4 Hydrogen.Barrier.Coatings 182
8.4.1 External.Coatings 183
8.4.2 Grown-On.Oxide.Films 185
8.5 Summary 188
References 188
. InTroduCTIon Gaseous.hydrogen,.H2,.has.many.physical.properties.that.allow.it.to.move.rapidly into.and.through.materials,.which.causes.problems.in.keeping.hydrogen.from.mate-rials that are sensitive to hydrogen-induced degradation Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 × 10–12 m, and.the.hydrogen.atom.is.smaller.still Since.it.is.small.and.light,.it.is.easily.trans-ported.within.materials.by.diffusion.processes The.process.of.hydrogen.entering and.transporting.through.a.material.is.generally.known.as.permeation,.and.this.sec-tion.reviews.the.development.of.hydrogen.permeation.barriers.and.barrier.coatings for.the.upcoming.hydrogen.economy . baCkground Hydrogen.permeation.is.defined.as.the.transport.of.hydrogen.as.dissociated.hydro-gen.atoms1.and.has.units.of.moles.of.hydrogen.gas.per.square.meter.per.second.(mol m–2.sec–1),.which.is.the.permeation.rate Known.as.Richardson’s.law.this.relation.can be.expressed.as J DK= d (P high1 2 / −P low1 2 / ) (8.1) where J is the permeation rate, D is the diffusion coefficient of hydrogen in the material,.and.K.is.Sievert’s.constant.for.the.material,.which.determines.the.hydrogen. solubility
Trang 27The.product.of.D.and.K is.referred.to.as.
will.have.a.hydrogen.permeation.rate.of.about.6.×.10–13.moles.of.H2.per.square.meter
of.steel.per.second.(moles-H2.m–2.sec–1).for.a.hydrogen.pressure.of.5,000.psi,.which
Trang 29hydrogen Permeability of various materials
Trang 30barrier development has pursued the direct oxidation of suitable alloys and (the.
proven more successful) aluminization of steels with subsequent alumina surface