Boiler w/ stone C276 Dense-Super Heater C276 Solar Cavity Vycor Window Tank Boiler w/ stone C276 Dense-Super Heater C276 Solar Cavity Vycor Window Decomposer Incoloy 800H & aluminide c
Trang 1Construction materials capable of handling H2SO4 vapor were studied
exten-sively.during.the.early.stages.of.the.S-I.cycle.development,.as.it.was.thought.to.be
the most critical materials.issue of.the cycle Because of.the high
operating.tem-perature involved, materials candidates were chosen from those that derive their
strength from solid-solution strengthening instead of precipitation hardening, as
overage conditions can lead to a decrease in strength Different researchers have
Trang 2a superheater also made with Hastelloy C-276 At this stage, the vapor begins to.
.catalytic.decompo-sition to take place This decomposer was actually a heat exchanger constructed
Boiler w/
stone (C276)
Dense-Super Heater (C276)
Solar Cavity
Vycor Window
Tank
Boiler w/
stone (C276)
Dense-Super Heater (C276)
Solar Cavity
Vycor Window
Decomposer (Incoloy 800H & aluminide coated 800H tube filled with catalyst pellets)
Condenser (Incoloy 825)
Trang 3Since the final design and operation conditions of the nuclear S-I hydrogen.
loop are still being finalized, materials of construction development for H2SO4
estimated depth of Corrosion(mil)
Trang 5fIgure . A schematic and a prototype of a SiC bayonet H2 SO 4 vaporizer/.
decomposer.
Trang 9fIgure . Zr705.coupon.before.and.after.a.120-h.test.in.HIx.at.310ºC.
Table .
Corrosion rate of various materials in hI x at high Temperatures
Corrosion rate (mm/yr) material boiler (0°C) feed (°C)
Trang 10Other ceramic materials, such as Al2O3 or mullite, have also been shown to.
Corrosion rate of alloys in h Po
alloy Concentration Temperature (°C)
Corrosion rate (mm/yr)
Trang 12fIgure . A.Ta-10W.coupon.tested.in.HIx-H3PO4.at.140ºC.for.1,209.hours (A).0.h,.(B).
250.h,.(C).874.h.&.(D).1,209.h
Trang 134.4.1.3.4 Materials for HI + I 2 + H 2 (Gaseous HI Decomposition)
Trang 144.4.1.3.5 Effect of Stress Corrosion and Chemical Contaminants
Corrosion Test results in a vapor medium of hI–I –h o (//) vapor at
various Temperatures for ,000 h duration
Trang 16125°C has been successfully demonstrated (figure.4.22) The permeability or flux.
Trang 17Corrosion.products.from.other.sections III H3PO4.concentration H2SO4.and.HIx.from.Section.I.and.iodine.
separation.
Corrosion.products.from.other.sections III HI.distillation.(reactive.and.
Trang 19O–HI.gaseous.mix-ture at elevated temperatures (figure.4.24) A separation factor of more than 600.
fIgure . Schematic.of.the.electro-electrodialysis.process.to.concentrate.the.HIx acid.
feed.from.the.Bunsen.reaction.
Trang 20Te mp (°C)
H 2 /H 2
S1 S2 S3 L2 L1
a
0 100 200 300 400 500 600 700
b fIgure . Separation.factor.of.H2 from.H 2 -HI-H 2 O.for.various.silica.membranes.
Trang 21... sulfuric acid decomposition
Fe 2 O 3
CeO 2
Al 2 O 3
NiO
fIgure . Relationship.between.conversion.to.SO2 +.H2O.and.temperature.for.catalytic.
metal.oxides.and.Pt.in.a.N2.flow.containing.4.mol%.SO3.at.a.space.velocity.of.4,300.h.
Trang 241 Miyamato, Y et al., R&D program on hydrogen production system with high
tem-perature cooled reactor, in International Hydrogen Energy Forum, Vol 2, Munich,.
Germany,.2000,.pp 271–278.
2 Brown, L.C., Funk, J.F., and Showalter, S.K., Initial Screening of
Thermochemi-cal Water Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using
3 Brown,.L.C.,.Besenbruch,.G.E.,.Lentsch,.R.D.,.Schultz,.K.R.,.Funk,.J.F.,.Pickard,.P.S.,.
Marshal, A.C., and Showalter, S.K., High Efficiency Generation of Hydrogen Fuels
10 High Efficiency Hydrogen Production from Nuclear Energy: Laboratory
11 Sakurai, M., Nakajima, H., Onuki, K., and Shimizu, S., Investigation of two liquid.
phase separation characteristics on the iodine-sulfur thermochemical hydrogen
pro-duction.process,.International Journal of Hydrogen Energy,.25,.605–611,.2000.
14 Trester,.P.W and.Staley,.H.G.,.Assessment and Investigation of Containment Materials
for the Sulfur-Iodine Thermochemical Water-Splitting Process for Hydrogen
Trang 2520 Porisini,.F.,.Selection and.evaluation of materials.for the construction of a pre-pilot.
plant.for.thermal.decomposition.of.sulfuric.acid,.International Journal of Hydrogen
26 Wong,.B.,.Brown,.L.C.,.and.Besenbruch,.G.E.,.Corrosion Screening of Construction
high.temperature,.Journal of Membrane Science,.267,.8–17,.2005.
34 Nomura, M., Kasahara, S., Okuda, H., and Nakao, S., Evaluation of the IS process.
featuring.membrane.techniques.by.total.thermal.efficiency,.International Journal of
Trang 26H2SO4.and.production.of.HBr.by.the.reaction.of.SO2.with.Br2.and.H2O,.International
39 Ballinger,.R.,.The.Development.of.Self.Catalytic.Materials.for.Thermochemical.Water.
Splitting.Using.the.Sulfur-Iodine.Process,.paper.presented.at.the.UNLV-HTHX.quar-terly.meeting,.Univerity.of.Nevada,.Las.Vegas,.December.5,.2005.
Trang 28for Photobiological Hydrogen Production
Daniel M Blake, Wade A Amos, Maria L Ghirardi, and Michael Seibert
ConTenTs
5.1 Introduction 123
5.2 Description.of.the.Process 124
5.2.1 Oxygen-Tolerant.Hydrogenase.Systems 126
5.2.2 Anaerobic.Hydrogenase.Systems 127
5.3 Reactor.Materials 129
5.3.1 Photobioreactors 130
5.3.2 Photobioreactor.Materials 131
5.4 Economics.and.Cost.Drivers.for.Photobiological.Hydrogen.Production 135
5.4.1 Operating.Costs 135
5.4.2 Capital.Costs 137
5.4.3 General.Design.Considerations 138
5.4.4 Case.Study 139
5.5 Conclusion 140
Acknowledgments 140
References 140
. InTroduCTIon The.world’s.energy.infrastructure.is.under.pressure.from.rapidly.increasing.demand
Recent.worldwide.events.have.increased.public.anxiety.about.the.cost.of.gasoline
and.heating.fuels,.and.the.security.of.these.resources.has.become.an.issue Finally,
the.amount.of.pollution.and.CO2.that.society.is.generating.is.increasing,.and.every-
one,.from.individual.villages.to.entire.countries,.is.looking.for,.or.should.be.look-ing.for,.a.sustainable,.secure.energy.system Currently,.the.world.has.over.6.billion
individuals,.all.powered.by.solar.energy The.food.we.eat.and.the.oxygen.we.breathe
come.from.photosynthesis Can.energy.from.the.sun,.which.indirectly.powers.all
animal.life.on.the.planet,.including.ourselves,.also.give.us.hydrogen.from.water.to
be.used.as.a.renewable.energy.carrier?
This.review.will.discuss.the.development.of.photobiological.hydrogen.produc-tion processes, where microorganisms (algae or cyanobacteria) funcThis.review.will.discuss.the.development.of.photobiological.hydrogen.produc-tion as living
Trang 29as starch molecules (the normal function of photosynthesis), these organisms can.
recombine.the.protons.and.electrons.and.evolve.H2.gas.under anaerobic conditions
Trang 301 The.hydrogenase.genes.in.green.algae.and.in.some.cyanobacteria.are.not.
2 The.expression.and.function.of.the.genes.that.catalyze.the.assembly.of.the
catalytic metallocluster of the algal [FeFe]-hydrogenases require
Maness, personal communication) The second approach involves the manipulation
of green algal physiology to induce culture anaerobiosis, expression of the
Redox Chemistry
(water oxidation produces O 2 , electrons and a proton gradient across the chloroplast membrane through an electron- transport- facilitated reaction)
CO 2 fixation
CO 2 + e - + ATP starch (ATP is obtained in a coupled dissipation of the
H + gradient by the ATP synthase) + O 2
H 2 gas production
2 H + + 2 e - H 2 (catalyzed by the hydrogenase enzyme) fIgure . Representation.of.the.major.steps.required.for.photosynthetic.CO2 fixation.
(upper.right.box).and.hydrogen.production.(lower.right.box).