Ngược lại đối diện với 2 góc bằng nhau là 2 cạnh bằng nhau... Với thước đo góc, có thể so sánh các cạnh của môôt tam giác hay không?. Và liệu với một thước kẻ có thể so sánh được các
Trang 1PHÒNG GIÁO DỤC ĐÀO TẠO NINH SƠN
TRƯỜNG THCS TRẦN QUỐC TOẢN
Trang 2Bài cũ:
Phát biểu tính chất về góc ngoài của tam giác?
2
1
B
A
C
2
2 2
>
>
Trang 3Tam giác ABC có :
A
µ µ
AC = AB
A
Tam giác ABC có :
AB = AC ⇒
C = B thì ∆ ABC cân tại A
⇒
Như vậy, trong một tam giác đối diện với 2 cạnh bằng nhau là hai góc bằng nhau.
Ngược lại đối diện với 2 góc bằng nhau là 2 cạnh bằng nhau.
Trang 4Với thước đo góc, có thể so sánh các cạnh
của môôt tam giác hay không?
Và liệu với một thước kẻ có thể so sánh
được các góc của một tam giác hay không?
A
AC > AB
Trang 60
Vẽ tam giác ABC với AC > AB Quan sát và dự
đoán xem ta có trường hợp nào trong các trường hợp sau:
?1
Tiết 47:
1) Góc đối diện với cạnh lớn hơn
Trang 7Tiết 47:
1) Gúc đối diện với cạnh lớn hơn
?2
*/ Cắt một tam giác ABC
bằng giấy với AC > AB.
Gấp hình và quan sát
*/ Gấp tam giác ABC từ đỉnh A sao cho cạnh
AB chồng lên cạnh AC để xác định tia phân
giác AM của góc BAC, khi đó điểm B trùng
C A
B
Trang 8Tiết 47:
1) Góc đối diện với cạnh lớn hơn
Định lí 1
Trong một tam giác góc đối diện với cạnh
lớn hơn là góc lớn hơn
∆ ABC
AC > AB
µ µ
B C >
GT
KL
1 2
B'
B
A
Trang 9Tiết 47:
1) Góc đối diện với cạnh lớn hơn
Định lí 1 1 2
B'
B
A
∆ ABC AC>AB
µ µ
B C>
GT
KL
Chứng minh
là một góc ngoài của ∆B’MC
Do AC > AB nên B’ nằm giữa A và C
∆ ABM và ∆ AB’M có: AB = AB’ (do cách lấy điểm B’)
1 2
A = A
AM là cạnh chung Do đó ∆ ABM = ∆ AB’M (c.g.c), suy ra
· ' AB M
(do AM là tia phân giác của góc A)
B AB M =
(2)
(1)
Trên tia AC, lấy điểm B’ sao cho AB’ = AB
Trang 10Áp dụng
So sánh các góc của ∆MNP, biết rằng:
MN = 4 cm; NP = 7 cm; MP = 6 cm
∆MNP có: NP > MP > MN
Giải
Trang 11V ẽ tam giác ABC với
Quan sát và dự đoán xem ta có trường hợp nào trong các trường hợp sau:
1) AC = AB 2) AC < AB 3) AC > AB
ˆ
ˆ > C
B
?3
A
+ Nếu AC = AB thì B C µ = µ (trái GT)
+ Do đó ta có trường hợp thứ ba là AC >AB
theo định lí 1 ta có : (trái GT)
Tiết 47:
2) Cạnh đối diện với góc lớn hơn
Trang 12Trong một tam giác, cạnh đối diện với
góc lớn hơn là cạnh lớn hơn
Tiết 47:
2) Cạnh đối diện với góc lớn hơn
1) Góc đối diện với cạnh lớn hơn
Định lí 1
Trong một tam giác góc đối diện với cạnh
lớn hơn là góc lớn hơn
Định lí 2
Trang 13Cạnh NP lớn nhất
A
B
C
Trong tam giác ABC vuông tại A.
Cạnh nào lớn nhất?
tại sao?
Trong tam giác tù MNP với góc M tù, cạnh nào lớn nhất?
M
N
P
Bài tập
Cạnh BC lớn nhất
Trang 14Bạn An
Với thước đo góc, có thể so sánh các cạnh
của môôt tam giác hay không?
Với một tam giác bình thường, để so sánh
được ba cạnh ta cần biết ít nhất mấy góc của nó ?
Với thước đo độ dài , có thể so sánh được các
góc của một tam giác bằng cách dùng định lí 1
* Ngược lại : Với thước đo độ dài , có thể so sánh được các góc của một tam giác hay không ?
Trang 15Bài 1 : So sánh các cạnh của tam giác ABC
biết rằng: A µ = 80 ; B 450 $ = 0
B ài tập
45 °
80 °
B
µ µ
+ + = + + =
⇒ = − + =
0
180
A B C
C C
∆ ABC có : (Định lí tổng ba góc của tam giác )
Giải
µ µ µ A>C>B
vì ⇒ BC>AB>AC
55 0
Trang 16Bµi 2
E
H
Cho hình vẽ sau :
Biết H là giao điểm hai đường phân giác của
góc F và góc G với HF< HG
Chứng minh : EF < EG
1
2
2 1
Giải
Trong tam giác HFG có : HF < HG (gt)
¶ µ
G <F ¶ µ
2G < 2F
⇒
Trong tam giác EFG có : G<F µ $
Suy ra : EF < EG ( đpcm)
nên
µ $
: G<F
Hay
(cmt)
Trang 17H¹nh Nguyªn Trang
So sánh CD và BD trong tam giác BCD
So sánh AD và BD trong tam giác ABD
Trang 18B’
∆ ABC
AC>AB
µ µ
B C>
GT
KL
Hướng dẫn chứng minh (cách2)
+ So sánh góc ABC với góc ABB’ :
+ So sánh góc ABB’ với góc AB’B:
+ So sánh góc AB’B với góc ACB :
· · '
ABC > ABB
· ABB ' = · AB B '
· ·
ABC > ACB
Tiết 47:
1) Góc đối diện với cạnh lớn hơn
Định lí 1
Trang 19Hướng dẫn học ở nhà:
• Học thuộc định lý 1 và 2.
• Chứng minh định lý 1 theo cách khác.
• Làm các bài tập 3, 4, 5, 6 trang 56 SGK
Trang 20PHÒNG GIÁO DỤC ĐÀO TẠO NINH SƠN
TRƯỜNG THCS TRẦN QUỐC TOẢN