1) (A–07) 3 1
3
2log (4x− +3) log (2x+ ≤3) 2 ( 3 3
4< ≤x )
3 log log ( 4 4) log 3
2
x+ + + + > −
1 2(log 1) log log 0
4
4) (B2–03)log0,5x+2log0,25(x− +1) log 6 02 ≤ (x ≥ 3)
2
2
x
æ ìï - ± üïö÷
ç Î - í ý÷
çè ïî ïþø
2
log (x+ +2) log (x- 5) +log 8=0 6; 3 17
2
2
1log ( 3) 1log ( 1) log (4 )
3
log (x+3) - log x- 2- log 2 1< ( 4; 3) ( 3; 1) (0; 2) (2;3)- - È - - È È
9) 2log 3x+ 1.5log 3x+ 1<400 ( -10 < x < 8 )
10) (B1–04)2 1 4 16 4
2
x
4
log [log (π x+ 2x −x)] 0< (x >1 x< - 4)∨
12) (B2–04)log3 x > log 3x ( x>3 ∨ 1/3 <x <1)
2x−x − 2 + −x x = 3 (x =–1 ∨ x=2)
3
1 2 9
2
−
−
9x + −x − 10.3x + −x + = 1 0 ( x=1 ∨ x= –2)
16) (A.06) 3.8x+4.12x–18x–2.27x=0 (x=1)
17) (D–06)2x x+ 2 −4.2x2 −x−22x+ =4 0 ( x=0 ∨ x=1)
18) (CĐHQ– 05)3 1 22 1 122 0
x
19) (B–07) ( 2 1− ) (x+ 2 1+ )x−2 2 0= (x = ± 1)
log (4x+144) 4 log 2 1 log (2− < + x− +1) (2<x<4)
22) (B–02)log (log (93 x 72)) 1
1 log 4 15.2 27 2log 0
4.2 3
x
− ( x = log 3)2
24) (D1–06)4x –2x+1 +2(2x–1)sin(2x +y –1) +2 =0 (x =1, y = – 2p–1 +k2π)
log (3x−1) log (3x+ − =3) 6 ( x=log 103 ∨ x= 3
28 log
27)
26) (D1–02) 16 3
2 3 27
2
log (4x+ ≥4) log (2 x+ −3.2 )x ( x ≥ 2)
28) (A2–04)2 1 2 3 2
log log
2 x 2 2 x
29) (A2–03) 15.2x+ 1 + ≥ 1 2x− + 1 2x+ 1 (x ≤ 2)
30) (D1–03) f(x)=x log 2.x Giải bpt f ’(x)≤0 (0 < x ≤ e ∧ x ≠1)
32) log 9 2 23log 2x log 3 2
33) log 3 5 log 5
4 x
log ( x − + + +5x 5 1) log (x − + ≤5x 7) 2 (1 5 5 5 5 4
log (2x + -x 1)+log (2x-1)+ =4 x=2;x=54
36) (B-08) æçç + ÷ö<
÷
2
4
1 2
ë2 2;1 2;2 2û
+
3
1
x
39) (A1-08) sin( )
p
-=
x
-3
2
2log (2x 2) log (9x 1) 1 x= 1; x = 32
42) (B2-08) 32x+ 1- 22x+ 1- 5.6x £ 0
2 3
1 log 2
£
x
43) (D1-08)22x2 - 4x- 2- 16.22x x- 2 - 1- 2 0£ 1- 3£ £ +x 1 3
2
45) (D2-07) log22x- 1= + -1 2x
x
46) (D2-07) 23x+ 1- 7.22x +7.2x- 2=0 x= 0; ± 1
2
< £x Ú >x
48) (A2-07)
+
2 1
logx 4 2
3
4
1 log
x
x