2,5điểm Cho tam giác ABC vuông tại A, phân giác BD.. Gọi F là giao điểm của BA và ED.. 2,5điểm Cho tam giác ABC vuông tại B, phân giác AD.. Gọi E là giao điểm của AB và KD... 2,5 điểm
Trang 1Đề kiểm tra khảo sát đầu năm môn toán lớp 8
năm học 2009 2010 –
Thời gian 90 phút (Không kể thời gian giao đề)
Câu 1 (1,5điểm) Thực hiện phép tính:
a)
5
2 7
17
5
−
c) 9 3
2 9 3
− x y y
x2 5 3 3 6
1
e)
5
4 5 , 4 25
7 : 456 , 1 18
Câu 2 (2điểm)
a) Tìm 2 số x, y biết: 7x = 3y và x – y = 16
b) Biết rằng 17l dầu hoả nặng 13,6kg Hỏi 12kg dầu hoả có chứa đợc hết vào chiếc can 16l không?
Câu 3 (1điểm) Vẽ đồ thị của hàm số: y x
2
1
=
Câu 4 (2điểm) Cho 2 đa thức: A = x3y+x2y−3xy−x3y+x
B = −x2y+3xy+2x+6
a) Xác định bậc của đa thức A?
b) Tính A + B, A – B ?
c) Tìm nghiệm của đa thức A + B ?
Câu 5 (2,5điểm)
Cho tam giác ABC vuông tại A, phân giác BD Kẻ DE vuông góc với BC (E∈
BC) Gọi F là giao điểm của BA và ED Chứng minh rằng:
a) ∆ ABD = ∆EBD và BD là đờng trung trực của AE b) DF = DC
c) AD < DC
Câu 6 (1điểm).
Cho: (a+b+c)2 =3a2+b2+c2
Chứng minh rằng: a = b = c
Ghi chú: - Cán bộ coi thi không giải thích gì thêm
Đề kiểm tra khảo sát đầu năm môn toán lớp 8
năm học 2009 2010 –
Thời gian 90 phút (Không kể thời gian giao đề)
Câu 1 (1,5điểm) Thực hiện phép tính:
Đề chẵn
Đề lẻ
Trang 2a)
2
5 7
17
3
−
c) 16 2
5 4 3
− 3 2 2 5 4
1x y x y
e)
4
1 : 12
5 1 125 2 2
1 2 6 ,
−
Câu 2 (2điểm)
c) Tìm 2 số x, y biết: 5x = 2y và x + y = -21
d) Với số tiền mua 135 quyển vở loại I có thể mua đợc bao nhiêu quyển vở loại
II biết rằng giá tiền vở loại II chỉ bằng 90% giá tiền vở loại I?
Câu 3 (1điểm) Vẽ đồ thị của hàm số: y x
3
1
=
Câu 4 (2điểm) Cho 2 đa thức: A = 3xy3+x2y−5xy−3xy3+x+6
B = −x2y+5xy+5x
a) Xác định bậc của đa thức A?
b) Tính A + B, A – B ?
c) Tìm nghiệm của đa thức A + B ?
Câu 5 (2,5điểm)
Cho tam giác ABC vuông tại B, phân giác AD Kẻ DK vuông góc với AC (K∈
AC) Gọi E là giao điểm của AB và KD Chứng minh rằng:
a) ∆ ABD = ∆AKD và AD là đờng trung trực của BK b) DE = DC
c) BD < DC
Câu 6 (1điểm).
Cho: (x+y+x)2 =3x2+y2+z2
Chứng minh rằng: x = y = z
Ghi chú: - Cán bộ coi thi không giải thích gì thêm
H
ớng dẫn chấm điểm môn toán lớp 8:
Câu 1 1,5 điểm
a
5
2
7
3− =
35
b :15
17
5
51
1
9 3
4 3 6 3 9
3
2 9
3
Đề chẵn
Trang 3d 6x2y5.−3x3y
2
1
y x
4 45 7 1000
25 1456 18
5 5
4 5 , 4 25
7 : 456 , 1 18
90
29 1 5
8 18
5 5
18 5
26 18
5 1 5
2 9 40 7
1 208 18
Câu 2 2 điểm
e) Tìm 2 số x, y biết: 7x = 3y và x – y = 16
f) Biết rằng 17l dầu hoả nặng 13,6kg Hỏi 12kg dầu hoả có chứa đợc hết vào chiếc can 16l không?
a
7 3 3
4 4
16 7
−
=
−
−
12 ) 4 (
=
28 ) 4 (
=
b
Giả sử x(l) dầu hoả nặng 12kg Vì thể tích dầu và khối
l-ợng dầu hoả là 2 đại ll-ợng tỉ lệ thuận nên ta có: 0,25
6 , 13
12
15 6 , 13
12
=
Nh vậy 12kg dầu hoả có thể tích là 15 l nên hoàn toàn
chứa đợc trong can 16 l. 0,25
Câu 3 1 điểm Vẽ đồ thị của hàm số: y x
2
1
=
Cho x= 2 ⇒ y= 1 Ta có: A(2;1) 0,25
4 2
-2 -4
A 2 1
0,5
Trang 4Vậy đồ thị của hàm số: y x
2
1
= là đờng thẳng đi qua gốc toạ độ O(0;0) và điểm A(2;1)
0,25
Câu 4 2 điểm
Cho 2 đa thức: A = x3y+x2y−3xy−x3y+x
B = −x2y+3xy+2x+6
a) Xác định bậc của đa thức A?
b) Tính A + B, A – B ?
c) Tìm nghiệm của đa thức A + B ?
a A = x3y+x2y−3xy−x3y+x= x2y−3xy+x 0,25
Vậy đa thức A có bậc là 3 0,25
6 6
=
−B x y xy x
c Nghiệm của đa thức A + B = 3x + 6 là -2 vì 3.(-2) + 6 = 0 0,250,25
Câu 5 2,5 điểm
Cho tam giác ABC vuông tại A, phân giác BD Kẻ DE vuông góc với BC (E∈BC) Gọi
F là giao điểm của BA và ED Chứng minh rằng:
a) ∆ ABD = ∆EBD và BD là đờng trung trực của AE b) DF = DC
c) AD < DC
Vẽ hình đúng
2
2 1
1 F
B
D
E
0,25
a BA = BE∆ ABD = ∆EBD (cạnh huyền – góc nhọn) 0,5
DA = DE Suy ra: BD là trung trực của AE 0,5
b DF = DC∆ ADF = ∆EDC (g.c.g) 0,250,25
c hơn cạnh huyền)∆ DEC vuông tại E nên: DE < DC (cạnh góc vuông nhỏ 0,25
Lại có: DA = DE (câu a) nên DA < DC 0,25
Trang 5Câu 6 1điểm
Cho: (a+b+c)2 =3a2+b2+c2
Chứng minh rằng: a = b = c
Ta có: ( )2 ( 2 2 2)
c b
2 2
2 b c 2ab 2bc 2ac 3a b c
⇔ (a2 − 2ab+b2) (+ a2 − 2ac+c2) (+ b2 − 2bc+c2)= 0 0,25
⇔ (a−b) (2 + a−c) (2 + b−c)2 = 0 0,25
⇔a – b = 0 và a – c = 0 và b – c = 0
- Trên đây chỉ là hớng dẫn chấm dựa vào lời giải sơ lợc của một cách Khi chấm, giám khảo phải bám sát yêu cầu trình bày lời giải đầy đủ, chi tiết và hợp logic
- Thí sinh làm cách khác mà đúng thì tổ chấm cần thống nhất cho điểm từng phần tơng ứng với thang điểm của hớng dẫn chấm
- Tổ chấm có thể chia nhỏ điểm tới 0,25 điểm
H
ớng dẫn chấm điểm môn toán lớp 8:
Câu 1 1,5 điểm
a
2
5
7
3− =
14
1 2
b :6
17
3
34
1
16 2
10 2 6 2 16
2
5 4
3
2
1 5
2 2
3 4
1x y x y =− x y
4 17 4 125 2 2 10
5 96 4
1 : 12
5 1 125 2 2
1 2
6
,
=24 – 1000 + =
3
17
3
1 970
Câu 2 2 điểm
a) Tìm 2 số x, y biết: 5x = 2y và x + y = -21
Đề lẻ
Trang 6b) Với số tiền mua 135 quyển vở loại I có thể mua đợc bao nhiêu quyển vở loại
II biết rằng giá tiền vở loại II chỉ bằng 90% giá tiền vở loại I?
a
5 2 2
3 7
21 5
+
+
6 ) 3 (
=
15 ) 3 (
=
b
Giả sử với số tiền đó mua đợc x(quyển vở) loại II Vì số
vở mua đợc tỉ lệ nghịch giá tiền 1 quyển vở nên ta có: 0,25
90
100
150 90
100 135
=
=
Vậy với số tiền mua 135 quyển vở loại I mua đợc 150
Câu 3 1 điểm Vẽ đồ thị của hàm số: y x
3
1
=
Cho x= 3 ⇒ y = 1 Ta có: A(3;1) 0,25
2
-2
O
A
3
1
0,5
Vậy đồ thị của hàm số: y x
3
1
= là đờng thẳng đi qua gốc toạ độ O(0;0) và điểm A(3;1)
0,25
Câu 4 2 điểm
Cho 2 đa thức: A = 3xy3+x2y−5xy−3xy3+x+6
B = −x2y+5xy+5x
a) Xác định bậc của đa thức A?
Trang 7b) Tính A + B, A – B ?
c) Tìm nghiệm của đa thức A + B ?
a A = 3xy3+x2y−5xy−3xy3+x+6= x2y−5xy+x+6 0,25
Vậy đa thức A có bậc là 3 0,25
6 4 10
=
c Nghiệm của đa thức A + B = 6x + 6 là -1 vì 6.(-1) + 6 = 0 0,250,25
Câu 5 2,5 điểm
Cho tam giác ABC vuông tại B, phân giác AD Kẻ DK vuông góc với AC (K∈AC) Gọi E là giao điểm của AB và KD Chứng minh rằng:
a) ∆ ABD = ∆AKD và AD là đờng trung trực của BK b) DE = DC
c) BD < DC
Vẽ hình đúng
A
E
D K
0,25
a AB = AK∆ ABD = ∆AKD (cạnh huyền – góc nhọn) 0,5
DB = DK Suy ra: AD là trung trực của BK 0,5
b DE = DC∆ BDE = ∆KDC (g.c.g) 0,250,25
c hơn cạnh huyền)∆ DKC vuông tại K nên: DK < DC (cạnh góc vuông nhỏ 0,25
Lại có: DB = DK (câu a) nên DB < DC 0,25
Câu 6 1điểm
Cho: (x+y+x)2 =3x2+y2+z2
Chứng minh rằng: x = y = z
Ta có: (x+ y+x)2 =3x2+y2+z2
2 2
2 y z 2xy 2yz 2xz 3x y z
Trang 8⇔ (x2 − 2xy+ y2) (+ x2 − 2xz+x2) (+ y2 − 2yz+z2)= 0 0,25
⇔ (x−y) (2 + x−z) (2 + y−z)2 = 0 0,25
⇔x – y = 0 và x – z = 0 và y – z = 0
- Trên đây chỉ là hớng dẫn chấm dựa vào lời giải sơ lợc của một cách Khi chấm, giám khảo phải bám sát yêu cầu trình bày lời giải đầy đủ, chi tiết và hợp logic
- Thí sinh làm cách khác mà đúng thì tổ chấm cần thống nhất cho điểm từng phần tơng ứng với thang điểm của hớng dẫn chấm
- Tổ chấm có thể chia nhỏ điểm tới 0,25 điểm