Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A = a[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A= a√6, S B= a√7 Tính góc giữa SC và mặt phẳng (ABC)
Câu 2 Cho hình lập phương ABCD.A′B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′D′
A. a
3
a3
a3
a3
3.
Câu 3 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ
điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450
A C(1; 5; 3) B C(5; 9; 5) C C(−3; 1; 1) D C(3; 7; 4).
Câu 4 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy là đường
tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện
A. 2π
√
2.a2
√
π√2.a2
Câu 5 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất
A −2 < m < 2 B 0 < m < 2 C m= 2 D −2 ≤ m ≤ 2.
Câu 6 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông với
cạnh huyền bằng 2a Tính thể tích của khối nón
A. 2π.a
3
π√2.a3
4π√2.a3
π.a3
3 .
Câu 7 Giá trị lớn nhất của hàm số y= (√π)sin 2x
trên R bằng?
Câu 8 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3+ x2 + mx − 1nằm bên phải trục tung
A m < 1
3. B m < 0. C Không tồn tại m. D 0 < m <
1
3.
Câu 9 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+
y2+ 24x)?
Câu 10 Cho hàm số y= f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Câu 11 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên)
Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
Câu 12 Tập nghiệm của bất phương trình 2x +1< 4 là
Câu 13 Cho cấp số nhân (un) với u1 = 2 và công bội q = 1
2 Giá trị của u3bằng
A. 1
1
7
2.
Trang 2Câu 14 Cho hàm số y= f (x) có đạo hàm f′
(x) = (x − 2)2
(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 15 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n1 = (−1; 1; 1) B.→−n3 = (1; 1; 1) C.→−n4 = (1; 1; −1) D.→−n2 = (1; −1; 1)
Câu 16 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Câu 17 Cho số phức z thỏa mãn z= 4(−3+ i)
1 − 2i + (3 − i)2
−i Mô-đun của số phức w= z − iz + 1 là
A |w|= √85 B |w|= 6√3 C |w|= √48 D |w|= 4√5
Câu 18 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số thực không âm B Mô-đun của số phức z là số thực.
C Mô-đun của số phức z là số thực dương D Mô-đun của số phức z là số phức.
Câu 19 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là
Câu 20 Cho z là một số phức Xét các mệnh đề sau :
I Nếu z= z thì z là số thực
II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z
Câu 21 Cho số phức z= 2 + 5i Tìm số phức w = iz + z
Câu 22 Số phức z= 4+ 2i + i2017
2 − i có tổng phần thực và phần ảo là
Câu 23 Những số nào sau đây vừa là số thực và vừa là số ảo?
A 0 và 1 B Chỉ có số 1 C C.Truehỉ có số 0 D Không có số nào.
Câu 24 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức
z1+ z2 z1
là
Câu 25 Phần thực của số phức z= 4 − 2i
2 − i + (1 − i)(2+ i)
A −29
11
11
29
13.
Câu 26 Họ nguyên hàm của hàm số f (x)= cosx + sinx là
A F(x) = −sinx − cosx + C B F(x)= sinx + cosx + C
C F(x) = sinx − cosx + C D F(x)= −sinx + cosx + C
Câu 27 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ
là
A (−3; −1; 4) B (3; 1; 4) C (−3; −1; −4) D (3; −1; −4).
Câu 28 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương
trình
A x − 2y+ 2z + 15 = 0 B x+ 2y + 2z + 15 = 0
C x − 2y+ 2z − 15 = 0 D x+ 2y + 2z − 15 = 0
Câu 29 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) và tọa độ
trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là:
A C(−1; 0; −2) B C(1; 4; 4) C C(1; 0; 2) D C(−1; −4; 4).
Trang 3Câu 30 Tìm nguyên hàm F(x) của hàm số f (x)= ex +1, biết F(0)= e.
A F(x)= ex +1. B F(x)= e2x C F(x) = ex D F(x)= ex+ 1
Câu 31 BiếtR18 f(x)= −2; R4
1 f(x)= 3; R4
1 g(x)= 7 Mệnh đề nào sau đây sai?
C.R14[4 f (x) − 2g(x)]= −2 D.R14[ f (x)+ g(x)] = 10
Câu 32 F(x) là một nguyên hàm của hàm số y= xex 2
Hàm số nào sau đây không phải là F(x)?
A F(x)= 1
2e
x2 + 2 B F(x)= 1
2(e
x2 + 5) C F(x) = −1
2e
x2 + C D F(x) = −1
2(2 − e
x2)
Câu 33 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) và đi qua điểm M(1; 2; −2) có phương trình là
A (x+ 2)2+ y2+ z2 = 3 B (x+ 2)2+ y2+ z2 = 9
C (x − 2)2+ y2+ z2 = 3 D (x − 2)2+ y2+ z2 = 9
Câu 34 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 35 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
Câu 36 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=
√ 2
2 Giá trị lớn nhất của biểu thức
P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?
A Pmax= 3
√ 6
√ 2
√ 2
√ 5
5 .
Câu 37 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
1 + z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 38 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
C z là một số thực không dương D Phần thực của z là số âm.
Câu 39 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 40 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P= (|z| − 2)2 B P= (|z| − 4)2 C P =
|z|2− 42 D P =
|z|2− 22
Câu 42 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8
3. B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2
√ 2
3 . D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1
Câu 43 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
Trang 4Câu 44 Hàm số nào trong các hàm số sau đồng biến trên R.
x+ 2 .
Câu 45 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
A. 1
1
1
1
12.
Câu 46 Tính đạo hàm của hàm số y= 5x +cos3x
A y′ = (1 − sin 3x)5x +cos3xln 5. B y′ = 5x +cos3xln 5.
C y′ = (1 + 3 sin 3x)5x +cos3xln 5. D y′ = (1 − 3 sin 3x)5x +cos3xln 5.
Câu 47 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng
x= −1; x = 2
A. 23
29
25
27
4 .
Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)
A.
x= 1 + 2t
y= −2 − 3t
z= 4 − 5t
x= 1 + 2t
y= −2 + 3t
z= 4 − 5t
x= −1 + 2t
y= 2 + 3t
z= −4 − 5t
x= 1 − 2t
y= −2 + 3t
z= 4 + 5t
Câu 49 Tìm tập xác định D của hàm số y=
r log23x+ 1
x −1
Câu 50 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1
x+ 1 đạt cực tiểu tại điểm x= 0.
Trang 5HẾT