1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (783)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 - 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 125,56 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho −→u (2;−2; 1), kết luận nào sau[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây là đúng?

A |→−u | = 3

B |→−u |= √3 C |→−u |= 1 D |→−u |= 9

Câu 2 Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?

C y= −x4+ 3x2− 2 D y= x2− 2x+ 2

Câu 3 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?

A log x > log y B log 1

a

x> log1

a

y C logax> logay D ln x > ln y.

Câu 4 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y= −x2+ 2mx − 1 − 2m trên đoạn [−1; 2] nhỏ hơn 2

A m ∈ (−1; 2) B m ∈ (0; 2) C −1 < m < 7

2. D m ≥ 0.

Câu 5 Cho hình hộp ABCD.A′B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuông góc của A′

lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết SABCD = 60a2, AB = 10a, góc giữa mặt bên (ABB′

A′) và mặt đáy bằng 450 Tính thể tích khối tứ diện ACB′

D′theo a

Câu 6 Công thức nào sai?

Câu 7 Cho hình phẳng (D) giới hạn bởi các đường y = √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành?

3.

Câu 8 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Giao điểm của (P)

và trục tung có tọa độ là

A (0; 5; 0) B (0; 1; 0) C (0; −5; 0) D (0; 0; 5).

Câu 9 Cho cấp số nhân (un) với u1 = 3 và công bội q = −2 Số hạng thứ 7 của cấp số nhân đó là

Câu 10 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh

đươc chon tao thanh tam giac đêu la

A P= 1

220.

Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y+ z + 6 = 0 Khẳng định nào sau đây đúng?

A (P) cắt mặt cầu (S ) B (P) tiếp xúc mặt cầu (S ).

C (P) đi qua tâm mặt cầu (S ) D (P) không cắt mặt cầu (S ).

Câu 12 Tập nghiệm của bất phương trình 52x+3> −1 là

Câu 13 Cho hàm số f (x) liên tục trên R và

2

R

0

( f (x)+ 2x) = 5 TínhR2

0

f(x)

Trang 2

Câu 14 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) và điểmM(1; 2; 2)thuộc mặt cầu.

Phương trình của (S ) là

A (x − 1)2+ (y − 4)2+ (z + 2)2 = 10 B (x+ 1)2+ (y + 4)2+ (z − 2)2= √40

C (x − 1)2+ (y − 4)2+ (z + 2)2 = 40 D (x+ 1)2+ (y + 4)2+ (z − 2)2= 40

Câu 15 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên

Số giá trị nguyên của tham số m để phương f (x+ m) = m có ba nghiệm phân biệt?

Câu 16 Cân phân công 3 ban tư môt tô 10 ban đê lam trưc nhât Hoi co bao nhiêu cach phân công khac

nhau

10

Câu 17 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)

1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là

Câu 18 Cho số phức z thỏa mãn z = (1+ i)(2 + i)

1 − i + (1 − i)(2 − i)

1+ i Trong tất cả các kết luận sau, kết luận nào đúng?

A z= 1

Câu 19 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là

Câu 20 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là

Câu 21 Trong các kết luận sau, kết luận nào sai

A Mô-đun của số phức z là số phức B Mô-đun của số phức z là số thực dương.

C Mô-đun của số phức z là số thực không âm D Mô-đun của số phức z là số thực.

Câu 22 Số phức z= 4+ 2i + i2017

2 − i có tổng phần thực và phần ảo là

Câu 23 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?

Câu 24 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?

Câu 25 Cho số phức z= 2 + 5i Tìm số phức w = iz + z

Câu 26 Tính tích phân I = R2

1 xexdx

Câu 27 Tìm nguyên hàm F(x) của hàm số f (x)= ex +1, biết F(0)= e

A F(x) = e2x B F(x) = ex C F(x)= ex +1. D F(x)= ex+ 1

Câu 28 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng đi qua trọng

tâm G của tam giác ABC và vuông góc với đường thẳng AC có phương trình là

A 3x − 2y+ z − 4 = 0 B 3x − 2y+ z + 4 = 0

C 3x − 2y+ z − 12 = 0 D 3x+ 2y + z − 4 = 0

Câu 29 Cho hàm số f (x) có đạo hàm với mọi x ∈ R và f′(x)= 2x + 1 Giá trị f (2) − f (1) bằng

Câu 30 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), và I(1; 1; 1) Mặt phẳng

qua I, song song với mặt phẳng (ABC) có phương trình là:

A z − 1 = 0 B y − 1= 0 C x+ y + z − 3 = 0 D x − 1= 0

Trang 3

Câu 31 Biết 18 f(x)= −2; R4

1 f(x)= 3; R4

1 g(x)= 7 Mệnh đề nào sau đây sai?

Câu 32 Tích phân I = R2

0 (2x − 1) có giá trị bằng:

Câu 33 Cho f (x) là hàm số liên tục trên [a; b] (với a < b ) và F(x) là một nguyên hàm của f (x) trên

[a; b] Mệnh đề nào dưới đây đúng?

A Diện tích S của hình phẳng giới hạn bởi hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) và trục hoành được tính theo công thức S = F(b) − F(a)

B. Rba f(x)= F(b) − F(a)

C.Rb

a k · f(x)= k[F(b) − F(a)]

D.Rab f(2x+ 3) = F(2x + 3)

b

a

Câu 34 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =

√ 2

2 và điểm A trong hình vẽ bên là điểm biểu diễn z

Biết rằng điểm biểu diễn số phức ω = 1

iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn

số phức ω là

Câu 35 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax= 10

√ 2

√ 2

√ 5

√ 6

2 .

Câu 36 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

√ 2

1

5.

Câu 37 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2

1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?

A. 1

2 < |z| < 3

5

2 < |z| < 7

2. C 2 < |z| <

5

3

2 < |z| < 2

Câu 38 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức

P= |z1+ z2|

√ 2

√ 3

Câu 39 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017

1 + z2017

2 + · · · + z2017

2015+ z2017

2016

Câu 40 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8

3. D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2

√ 2

3 .

Trang 4

Câu 41 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Câu 42 Cho a, b, c là các số thực và z= −1

2 +

√ 3

2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng

Câu 43 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)

Câu 44 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng

(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C

A. 3a

6

a√15

3a√6

3a√30

10 .

Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm

A(1; 2; 3) và có một véc tơ pháp tuyến là→−n(2; 1; −4)

A 2x+ y − 4z + 7 = 0 B 2x+ y − 4z + 5 = 0

C −2x − y+ 4z − 8 = 0 D 2x+ y − 4z + 1 = 0

Câu 46 Trong không gian với hệ trục tọa độ Oxyz, cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc tơ 2→−u + 3−→v

A 2→−u + 3−→v = (2; 14; 14) B 2→−u + 3−→v = (1; 13; 16)

C 2→−u + 3−→v = (1; 14; 15) D 2→−u + 3−→v = (3; 14; 16)

Câu 47 Cho hình lăng trụ đứng ABC.A′B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′B′C′

Câu 48 Hàm số y= x4− 4x2+ 1 đồng biến trên khoảng nào trong các khoảng sau đây

Câu 49 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x

x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7

3) làm trọng tâm.

Câu 50 Cho P= 2a4b8c, chọn mệnh đề đúng trong các mệnh đề sau

Trang 5

HẾT

Ngày đăng: 10/04/2023, 07:56